K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Ta có:

(x-1)/2000+(x+5)/2016+(x+1)/1006=4

=>(x-2001)/2000+(x-2001)/2016+(x-2001)/1006=0         (Cộng 1 vào 2 phân số đầu, cộng 2 vào phân số cuối)

=>(x-2001)*(1/2000+1/2016+1/1006)=0

=>x-2001=0    (Do 1/2000+1/2016+1/1006 khác 0)

=>x=2001

Vậy x=2001

\(\Leftrightarrow\left(\frac{x-1}{2010}-1\right)+\left(\frac{x+5}{2016}-1\right)+\left(\frac{x+1}{1006}+2-4\right)=0\)( mk nghĩ đề sai đó bạn! Đổi 2000 thành 2010)

\(\Leftrightarrow\frac{x-2011}{2010}+\frac{x-2011}{2016}+\frac{x-2011}{1006}=0\)

\(\Leftrightarrow\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2016}+\frac{1}{1006}\right)=0\Rightarrow x-2011=0\Leftrightarrow x=2011\)

Bạn có thể cho mình biết bài này bạn lấy ở đâu không? Để mk biết đề sai hay đúng nhé. Do mk thấy phần đề không hợp lí lắm
                                                          ~ Chúc bạn học tốt~

mk nghĩ đề sai đó bạn

\(\frac{x-11}{2000}+\frac{x+5}{2016}+\frac{x+1}{1006}=4\)

\(\Leftrightarrow\left(\frac{x-11}{2000}-1\right)+\left(\frac{x+5}{2016}-1\right)+\left(\frac{x+1}{1006}-2\right)=0\)

\(\Leftrightarrow\frac{x-2011}{2000}+\frac{x-2011}{2016}+\frac{x-2011}{1006}=0\)

\(\Leftrightarrow\left(x-2011\right)\left(\frac{1}{2000}+\frac{1}{2016}+\frac{1}{1006}\right)=0\)

\(\Rightarrow x-2011=0\Rightarrow x=2011\)

Vây ...................................

@#$%Họctốt%$#@

<->(x-1)/2010 + (x+5)/2016 + (x+1)/1006 - 4=0

<-> (x-1)/2010 -1 + (x+5)/2016 -1  + (x+1)/1006 -2=0

<-> (x-2011)/2010 + (x-2011)/2016 + (x-2011)/1006 = 0

<-> (x-2011)*(1/2010 + 1/2016 + 1/1006) = 0 

Mà 1/2010+1/2016+1/1006 khác 0

=> x-2011=0 <-> x=2011

6 tháng 4 2016

x =2001 vì nếu nhìn kĩ hơn thì sẽ có phép tính là 1+1+2=4 và số nào -1 bằng 2010 ^_^ cộng 5 bằng 2016 và cộng 1 gấp 2 1006

18 tháng 7 2017

\(3.\)

\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)

\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)

\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)

\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)

\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)

\(\Rightarrow\)\(x=2012\)

24 tháng 8 2020

Bài làm:

Pt <=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-5}{2016}-1\right)+\left(\frac{x-7}{2014}-1\right)=4-4\)

\(\Leftrightarrow\frac{x-2021}{2020}+\frac{x-2021}{2018}+\frac{x-2021}{2016}+\frac{x-2021}{2014}=0\)

\(\Rightarrow x-2021=0\Rightarrow x=2021\)

12 tháng 8 2018

1)  \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)

<=>  \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=>  \(x+1=0\)  (do  1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)

<=>  \(x=-1\)

Vậy...

12 tháng 8 2018

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

<=>  \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

<=>  \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

<=>  \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

<=>  \(x+2010=0\)  (do  1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)

<=>  \(x=-2010\)

Vậy....

23 tháng 9 2016

\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)

\(\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=0\)

\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)

Có: \(\frac{1}{2016}+\frac{1}{2015}+...+1\ne0\)

\(\Rightarrow x-2017=0\)

\(\Rightarrow x=2017\)

23 tháng 9 2016

<=> \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+....+\frac{x-2016}{1}-2016=0\)\(=0\)

<=> \(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)+...+\left(\frac{x-2016}{1}-1\right)=0\)

<=> \(\frac{x-2017}{2016}+\frac{x-2017}{2015}+...+\frac{x-2017}{1}=0\)

<=> \(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}\right)=0\)

<=> \(x-2017=0\)\(\left(do\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}>0\right)\)

<=> \(x=2017\)

Vậy x = 2017

đúng thì

9 tháng 4 2018

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

7 tháng 8 2017

Bài 1  :

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)

\(=\frac{1}{2018}\)

8 tháng 8 2017

B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)

\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)

\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)

\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)

\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)

\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)

\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)

\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)

\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)

VẬY B=200