K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

???????????????????????????????

20 tháng 6 2017

a, \(xy+2x+2y+y^2\)

\(=\left(xy+2x\right)+\left(y^2+2y\right)\)

\(=x.\left(y+2\right)+y.\left(y+2\right)\)

\(=\left(y+2\right).\left(x+y\right)\)

b, Sửa đề:

\(-6x^2-9xy+15y^2\)

\(=-\left(6x^2+9xy-15y^2\right)\)

\(=-\left(6x^2-6xy+15xy-15y^2\right)\)

\(=-\left[\left(6x^2-6xy\right)+\left(15xy-15y^2\right)\right]\)

\(=-\left[6x.\left(x-y\right)+15y.\left(x-y\right)\right]\)

\(=-\left[\left(x-y\right).\left(6x+15y\right)\right]\)

c, \(2x\left(x-3\right)+y\left(x-3\right)+\left(3-x\right)\)

\(=2x\left(x-3\right)+y\left(x-3\right)-\left(x-3\right)\)

\(=\left(x-3\right).\left(2x+y-1\right)\)

Chúc bạn học tốt!!!

3 tháng 8 2020

Bài 1:

a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)

\(=12x^2-4x-6x-2-x-3\)

\(=12x^2-11x-5\)

b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)

\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)

\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)

\(=2x^4y+1x^3y^2-2x^2y^3\)

c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)

\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)

\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)

\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)

\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)

\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)

\(=-48x^3-8x^2-24x^4+15x-9\)

3 tháng 8 2020

Bài 2 ạ

4 tháng 10 2019

Chọn D

29 tháng 6 2023

\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)

\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)

\(=6x^2y\)

\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)

\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)

\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)

1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy

2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3

=6x^2y

3: =(x+y-x+y)^2=(2y)^2=4y^2

4: =(2x+3-2x-5)^2=(-2)^2=4

5: =18^8-18^8+1=1

a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)

\(=6x^2-2x-6x^2-2x+18x+6\)

=14x+6

b: Ta có: \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)+3\left(2x-3\right)\)

\(=4x^2-12x+9-4x^2+1+6x-9\)

\(=-6x+1\)

c: Ta có: \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-1-x-y\right)^2\)

=1

4 tháng 9 2021

a) \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)=6x^2-2x-6x^2-2x+18x+6=14x+6\)

b) \(\left(2x-3\right)^2-\left(1+2x\right)\left(2x-1\right)+3\left(2x-3\right)=4x^2-12x+9-4x^2+1+6x-9=-6x+1\)

c) \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)

a: =2x^3-3x-5x^3-x^2-x^2

=-3x^3-2x^2-3x

b: =2(x^2+x-6)+x^2-4x+4+x^2+6x+9

=2x^2+2x-12+2x^2+2x+13

=4x^2+4x+1

d: =4x^2-9-x^2-10x-25-x^2-x+2

=2x^2-11x-32

\(\dfrac{4x^2\left(y+z\right)^5}{2x\left(y+z\right)^3}=2x\left(y+z\right)^2\)

Ói , hoa mắt chóng mặt nhức đầu ,

9 tháng 8 2017

sao giống có chữa quá z

14 tháng 12 2020

a, \(x^3+2x^2+x-xy=x\left(x^2+2x+1-y\right)\)

\(=x\left[\left(x+1\right)^2-y\right]\)

b, \(x^3-y^3+2x^2-2y^2=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left[\left(x^2+xy+y^2\right)+2\left(x+y\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)