K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

Ta có: \(x^2-2\left(m+1\right)x+m-4=0\)

Phương trình có hai nghiệm phân biệt khi △'>0\(\Leftrightarrow\left(m+1\right)^2-m+4>0\Leftrightarrow m^2+m+5>0\)(luôn đúng)

Theo Vi-ét \(x_1+x_2=2\left(m+1\right);x_1x_2=m-4\)

\(A=x_1+x_2-2x_1x_2+2021=2\left(m+1\right)-2\left(m-4\right)+2021=2031\) không phụ thuộc vào m

a: Thay x=-3 vào pt, ta được:

9+6m+2m+1=0

=>8m+10=0

hay m=-5/4

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)

\(=4m^2-8m-4\)

\(=4\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì (m-2)(m+1)>=0

=>m>=2 hoặc m<=-1

c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)

\(\Leftrightarrow\left(2m\right)^2=16\)

=>2m=4 hoặc 2m=-4

=>m=2(nhận) hoặc m=-2(nhận)

4 tháng 7 2021

\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)

Suy ra pt luôn có hai nghiệm pb với mọi m

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)

\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)

\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)

\(\Leftrightarrow m< \dfrac{99}{20}\)

Vậy...

4 tháng 7 2021

\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)

Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)

\(=25\left(m-4\right)-5m+1=20m-99\)

\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

a: Thay x=-1 vào (6), ta được:

1+2m+m+6=0

=>3m+7=0

=>m=-7/3

x1+x2=-2m/1=-2*7/3=-14/3

=>x2=-14/3-x1=-14/3+1=-11/3

b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)

Để phương trình có nghiệm kép thì 3m+6=0

=>m=-2

Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0

=>x^2-4x+4=0

=>x=2

29 tháng 1 2023

ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi

7 tháng 4 2022

a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)

Để pt có nghiệm x1, x2 thì \(\Delta>0\)

\(\Leftrightarrow16-8m>0\)

\(\Leftrightarrow-8m>-16\)

\(\Leftrightarrow m< 2\)

b.

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow4^2-2.2m-4-16=0\)

\(\Leftrightarrow-4m-4=0\)

\(\Leftrightarrow m=-1\)

NV
7 tháng 4 2022

a.

Phương trình có 2 nghiệm khi:

\(\Delta'=4-2m\ge0\Rightarrow m\le2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow16-4m-4=16\)

\(\Leftrightarrow m=-1\) (thỏa mãn)

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4