K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc A chung

=>ΔAHB đồng dạng với ΔAKC

=>AH=AK

c: Xet ΔAKI vuông tại K và ΔAHI vuông tại H có

AI chung

AK=AH

=>ΔAKI=ΔAHI

=>góc KAI=góc HAI

d: ΔABC cân tại A

mà AP là phân giác

nên P là trung điểm của BC

=>AP vuông góc BC

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

b: Xét ΔKAI vuông tại K và ΔHAI vuông tại H có

AI chung

AK=AH

Do đó: ΔKAI=ΔHAI

Suy ra: \(\widehat{KAI}=\widehat{HAI}\)

c: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

hay AI⊥BC tại P

13 tháng 2 2022

a, Xét ΔΔtam giác vuông AKC và tam giác vuông AHB ta có :
 AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI  là phân giác góc A

24 tháng 3 2021

a)xét 2 tam giác vuông AHB và AKC có:

\(\widehat{A}\) là góc chung

AB=AC (ΔABC cân tại A)

⇒ΔAHB=ΔAKC (cạnh huyền góc nhọn)

⇒BH=CK (2 cạnh tương ứng)

b) xét 2 tam giác vuông AHI và AKI có:

AH=AK (ΔAHB=ΔAKC)

AI là cạnh chung

⇒ ΔAHI=ΔAKI (cạnh huyền cạnh góc vuông)

\(\widehat{HAI}\) =\(\widehat{KAI}\) (2 góc tương ứng)

⇒AI là tia phân giác của\(\widehat{HAK}\) 

                                                                                                   

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

b: Xét ΔKCB vuông tại K và ΔHBC vuông tại H có

BC chung

KB=HC

Do đó: ΔKCB=ΔHBC

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

=>ΔBIC cân tại I

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

c: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

d: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

10 tháng 5 2018

a, Xét \(\Delta\)tam giác vuông AKC và tam giác vuông AHB ta có :
 AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI  là phân giác góc A
k hộ mình nhé

10 tháng 5 2018

a) Xét  ΔACK và  ΔABH

Ta có: ∠AKC = ∠AHB = 900 (gt)

AB = AC (ΔABC cân tại A)

∠BAC chung

nên ΔACK =  ΔABH (cạnh huyền-cạnh góc vuông)

suy ra AH = AK

b) Ta có BH⊥AC; CK⊥AB(gt)

mà BH và CK cắt nhau tại I

nên I là trực tâm của ΔABC

suy ra AI là đường cao của ΔABC

mà ΔABC cân tại A 

nên AI la Phân giác của  ∠BAC

22 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng

9 tháng 4 2015

a) Hai tam giác vuông ABH và  ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra GÓC IAK = GÓC IAH

Vậy AI là tia phân giác của góc A

18 tháng 1 2018

a) Hai tam giác vuông ABH và  ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAK

=ˆIAH

Vậy AI là tia phân giác của góc a