K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

\(A=\frac{x^2+1}{x^2-x+1}=\frac{x^2-x+1+x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)

xét \(b=\frac{x}{x^2-x+1}\Leftrightarrow bx^2-bx+b=x\)

\(\Leftrightarrow bx^2-\left(b+1\right)x+b=0\left(1\right)\)

Bài toán trở thành tìm b để (1) có nghiệm

Nếu \(b=0\Leftrightarrow-x=0\Rightarrow x=0\)

Nếu \(b\ne0\)cần \(\Delta_x\ge0\Rightarrow\left(b+1\right)^2-4.b^2\ge0\)

\(\Leftrightarrow-3b^2+2b+1\ge0\)\(\Delta_b=1-\left(-3\right).1=4\)

\(\Rightarrow\frac{-1}{3}\le b\le1\)

\(\Rightarrow\frac{2}{3}\le A\le2\)

DM
30 tháng 1 2018

Kết luận:   GTNN của P là 3/4; P không có GTLN.

Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để   \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.

Ta có  \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).

Nếu \(P=1\) thì (1) trở thành  \(x=0\), phương trình có nghiệm x = 0.

Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi  

                                  \(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)

Vậy tập giá trị của P là   \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)

26 tháng 7 2017

\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)

\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)

Dấu = xảy ra  khi \(x=1\)

14 tháng 2 2019

Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath

14 tháng 2 2019

\(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0.\)

tương tự chứng minh x^2+x+1>0

\(-2\left(x^2+2x+1\right)\le0\Rightarrow-\frac{2\left(x^2+2x+1\right)}{x^2+x+1}\le0\)

\(\Rightarrow\frac{-2x^2-4x-x}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1-3x^2-3x-3}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1}{x^2+x+1}-3\le0\Rightarrow D\le3.\)

\(2\left(x^2-2x+1\right)\le0;3\left(x^2+x+1\right)>0\)

\(\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}\ge0\Rightarrow\frac{2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{3\left(x^2-x+1\right)-x^2-x-1}{3\left(x^2+x+1\right)}=d-\frac{1}{3\Rightarrow}d\ge\frac{1}{3}\)

=> GTNN, GTLN

16 tháng 10 2019

TXĐ:R

Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)

<=> \(Ax^2-Ax+A-x^2-1=0\)

<=> \(\left(A-1\right)x^2-Ax+A-1=0\)

TH1: A =1 => x =0

TH2: A khác 1

phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)

<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)

A min =2/3 thay vào => x

A max =2 thay vào tìm x .

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

27 tháng 3 2019

\(P=\frac{x^2+1}{x^2-x+1}\)

Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi \(x\)

\(P=\frac{3x^2+3}{3\left(x^2-x+1\right)}=\frac{2\left(x^2-x+1\right)+x^2+2x+1}{3\left(x^2-x+1\right)}\)

         \(=\frac{2}{3}+\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}\ge\frac{2}{3}\)

Giá trị nhỏ nhất của P là \(\frac{2}{3}\)khi \(x+1=0\Rightarrow x=-1\)

\(P=\frac{2x^2-2x+2-x^2+2x-1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x-1\right)^2}{x^2-x+1}\)

     \(=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\)

Giá trị lớn nhất của P là 2 khi \(x-1=0\Rightarrow x=1\)

27 tháng 3 2019

 (ß) mình nghĩ đây là toán 9 thì nên dùng delta chứ?

\(Px^2-Px+P=x^2+1\)

\(\Leftrightarrow\left(P-1\right)x^2-Px+\left(P-1\right)=0\)

\(\Delta=P^2-4\left(P-1\right)^2\ge0\)

\(\Leftrightarrow-3P^2+8P-4\ge0\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy...

17 tháng 4 2019

\(\Leftrightarrow yx^2+y=x^2\)

\(\Leftrightarrow x^2\left(y-1\right)+y=0\)

*Xét y = 1 thì....

*Xét y khác 1

Có \(\Delta'=0-y\left(y-1\right)\)

          \(=-y^2+y\)

Pt có nghhieemj \(\Leftrightarrow\Delta'\ge0\)

                          \(\Leftrightarrow0\le y\le1\)

Làm nốt nha