K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

4a^2 : (a+3)=1

=>a+3=4a2 : 1

a+3=4a.a

<=> 4a.a - a-3=0

a.(4a-1)-3=0

=>a.(4a-1)=3

=>a và 4a-1 thuộc Ư(3)={1;-1;3;-3}

với a =1=>4a-1=3<=>a=1(tm)

với a=-1=>4a-1=-3<=>a=-1/2(ktm)

với a=3=>4a-1=1<=>a=1/2(ktm)

với a= -3=>4a-1=-1<=>a=0(ktm)

vậy ....

27 tháng 6 2017

Đáp án C

3 tháng 3 2017

Đáp án đúng : A

Dấu “=” xảy ra  ⇔ 2 a − 1 3 − 2 a ≥ 0 ⇔ 1 2 ≤ a ≤ 3 2

Vậy GTNN của B là 2 khi  1 2 ≤ a ≤ 3 2

17 tháng 11 2018

Đáp án đúng : D

20 tháng 11 2021

Số hs nam là \(28\times\left(1-\dfrac{3}{7}\right)=16\left(hs\right)\)

20 tháng 11 2021

Số hs nam là 28×(1−\(\dfrac{\text{3}}{\text{7}}\))=16(hs)

               Đáp số:16 HS

HT nha

5 tháng 8 2023

a) (a2 - 1)2 + 4a2

= a4 - 2a2 + 1 + 4a2

= (a2)2 + 2.a2.1 + 12)

=(a2 + 1)2

b) (6x2 + y2)(y2 - 6x2)

= (y2 + 6x2)(y2 - 6x2)

= (y2)2 - (6x2)2

= y4 - 36x4

21 tháng 9 2018

Vì a  ≠ ±  3/2 nên  4 a 2 - 9   ≠  0 Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì a  ≠  - 1 nên  3 a 3 + 3   ≠  0 Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Do đó: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

13 tháng 10 2019

số học sinh nam là : 

(55 + 3) : 2 = 29 (học sinh)

số học sinh nữ là: 

29 - 3 = 26 (học sinh)

đ\s_

Số h/s nam của lớp 4A2 là:

(55+3):2=44

Số h/s nữ của lớp 4A2 là:

55-44=11

Đáp số:h/s nam:44

        h/s nữ  :11

27 tháng 10 2021

\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)

21 tháng 1 2022

1. \(\left(a+1\right)^2\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

\(\Leftrightarrow a^2+2a+1-4a\ge0\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\) (luôn đúng).

Dấu '=' xảy ra khi a=1. Vậy: Ta có đpcm.

NV
5 tháng 3 2021

Áp dụng BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\ge0\)

\(\Leftrightarrow9abc+18\left(a+b+c\right)\ge12\left(ab+bc+ca\right)+27\)

\(\Leftrightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

Do đó:

\(P=4a^2+4b^2+4c^2+abc\ge4a^2+4b^2+4c^2+\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{3}\left(a^2+b^2+c^2\right)-3\)

\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{9}\left(a+b+c\right)^2-3=13\)

Đề bài bạn viết thiếu số 1 bên vế phải rồi

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

Áp dụng BĐT Schur:

$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)$

$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$

$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$

Do đó:

$4(a^2+b^2+c^2)+abc\geq 4(a^2+b^2+c^2)+\frac{4}{3}(ab+bc+ac)-3$

$=\frac{10}{3}(a^2+b^2+c^2)+\frac{2}{3}(a+b+c)^2-3$

$\geq \frac{10}{9}(a+b+c)^2+\frac{2}{3}(a+b+c)^2-3=13$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$