Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tính giá trị m để hệ phương trình trên có nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hệ pt có nghiệm duy nhất thì : a/a' # b/b' => m/1 # 1/m
=> m^2 # 1 => m # 1 hoặc m # -1
mx+y=m
<=>mx-m=-y
<=>m(x-1)=-y(1)
x+my=1
<=>x-1=-my
<=>m(x-1)=-m^2y(2)
Thay (1) vào (2) ta có:
-y=-m^2y
<=> y=m^2y
<=>m^2=1
=>m thuộc{1;-1}
Vậy m thuộc{-1;1}
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
\(\Leftrightarrow\) \(\hept{\begin{cases}y=m-mx\left(1\right)\\x+my=1\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta có: x+m(m-mx)=1
\(\Leftrightarrow\)x+m2-m2x=1
\(\Leftrightarrow\)x(1-m2)+(m2-1)=0
\(\Leftrightarrow\)(x-1)(1-m2)=0
Ta biện luận phương trình trên:
+)Với m\(\ne\)\(\pm1\) thì hpt có 1 n0 duy nhất là (x;y):(1;0)
+)Với m = \(\pm1\) thì hpt có vô số nghiệm là (x;y):(x;\(\pm1\))
Vậy .....................
bạn tự hoàn thiện nha
chúc bạn học tốt (đừng quên k cho mình nhé! thank you very much)
Thế vào phương trình 2x +my = 8 ta được. 2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m.
Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm.
Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m -2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất.
Vậy hệ đã cho có nghiệm với mọim, và khi m khác 4 thì hệ ...
Ta có: \(\hept{\begin{cases}x-my=m+3\left(1\right)\\mx-4y=\left(-2\right)\left(2\right)\end{cases}}\)
Từ (1), suy ra \(my=\left(m+3\right)+x\)(3)
Thay (3) vào 2. Ta có: \(mx-4\left[\left(m+3\right)+x\right]=-2\)
\(\Leftrightarrow mx-\left(4m-12+x\right)=-2\)
\(\Leftrightarrow6mx=-11\)
\(\Leftrightarrow mx=\left(-11\right):6=-\frac{11}{6}\)(4)
Để hệ phương trình có nghiệm duy nhất (x;y) với x +y > 0 khi PT (4) có nghiệm duy nhất
\(\Leftrightarrow m\ne0\)
\(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\mx-1+x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\\left(m+1\right)x=6\end{cases}}\)
Để hệ có nghiệm duy nhất thì
m + 1 ≠ 0 <=> m ≠ - 1
Để hệ vô nghiệm thì
m + 1 = 0 <=> m = - 1
\(D=m+1\) ; \(D_x=5+1=6\) ; \(D_y=m-5\)
Để hpt có nghiệm duy nhất thì \(D\ne0\Rightarrow m\ne-1\)
Để hpt vô nghiệm thì \(\hept{\begin{cases}D=0\\D_x\ne0\end{cases}}\) hoặc \(\hept{\begin{cases}D=0\\D_y\ne0\end{cases}}\)
Dễ thấy ngay \(D_x\ne0\) . Vậy m = -1 thì hệ vô nghiệm.