Bài 1: Tìm số nguyên biết:
a) 13 (8 – n)
b) x – 5 là ước của 3x + 2
Bài 2: Tính tổng các số nguyên x biết:
|x| ≤ 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
b: \(\Leftrightarrow x+8\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-7;-9;-3;-13\right\}\)
a) -7 là bội của x + 8. Nên x + 8 là ước của -7
x + 8 ∈ {1; -1; 7; -7}
x ∈ {-7; -9; -1; -15}
b) Ta có: 3x – 13 = 3x – 6 – 7 = 3 ( x – 2 ) – 7
Vì x – 2 là ước của 3x – 13 nên x – 2 là ước của 3(x – 2) – 7
Nên x – 2 là ước của 7 ⇒ x – 2 ∈ {1 ; -1 ; 7 ; -7}
x ∈ {3 ; 1 ; 9 ; -5}
1,S=2-4-6+8+10-12-14+16+.......+1994-1996-1998+2000
S =(2-4-6+8)+(10-12-14+16)+......+(1994-1996-1998+2000)
S= 0 +0+........+0
S=0
2/ Vì 13 chia hết cho x-2
-> x-2 thuộc Ư(13)={1;13;-1;-13}
ta có bảng
x-2 | 1 | 13 | -1 | -13 |
x | 3 | 15 | 1 | -11 |
3/ Vì -15chia hết cho n-3->n-3 thuộc Ư(-15)={1;3;5;15;-1;-3;-5;-15}
Ta có bảng
n-3 | 1 | 3 | 5 | 15 | -1 | -3 | -5 | -15 |
n | 4 | 6 | 8 | 18 | 2 | 0 | -2 | -12 |
4/ n-2 thuộc Ư(3)={1;3;-1;-3}
ta có bảng
n-2 | 1 | 3 | -1 | -3 |
n | 3 | 5 | 1 | -1 |
\(a,\left(8-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}8-x=0\\x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-5\end{matrix}\right.\\ b,2x\left(x+81\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x+81=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-81\end{matrix}\right.\)
a)\(\left(8-x\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}8-x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-5\end{matrix}\right.\)
b)\(2x\left(x+81\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x+81=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-81\end{matrix}\right.\)
Bài 2:
\(\left|x\right|\le13\)
\(\Rightarrow\left|x\right|\in\left\{0;1;2;...;13\right\}\)
Mà \(x\in Z\)nên \(x\in\left\{-13;-12;...;13\right\}\)
Bài 1:
b) Ta có:
\(x-5\)là ước của \(3x+2\)
\(\Rightarrow3x+2⋮x-5\)
\(\Rightarrow\left(3x-15+17\right)⋮x-5\)
Mà \(3x-15⋮x-5\Rightarrow17⋮x-5\Rightarrow x-5\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
+) \(x-5=1\Leftrightarrow x=6\)
+) \(x-5=-1\Leftrightarrow x=4\)
+) \(x-5=17\Leftrightarrow x=22\)
+) \(x-5=-17\Leftrightarrow x=-12\)
Vậy \(x\in\left\{6;4;22;-12\right\}\)