K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2023

 Gọi T là giao điểm của DE và AB. Qua F kẻ đường thẳng song song với BC cắt DA, DT lần lượt tại U, V.

 Áp dụng định lý Menelaus cho tam giác ABC, cát tuyến TED, ta có:

 \(\dfrac{TA}{TB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

 Áp dụng định lý Ceva cho tam giác ABC với AD, BE, CF đồng quy tại O, ta có:

 \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

Từ đó suy ra \(\dfrac{TA}{TB}=\dfrac{FA}{FB}\Leftrightarrow\dfrac{TA+FA}{TB}=\dfrac{2FA}{TB}\) \(\Leftrightarrow\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)

Mà theo định lý Thales:

 \(\dfrac{TF}{TB}=\dfrac{FV}{BD}\) và \(\dfrac{AF}{AB}=\dfrac{FU}{BD}\)

 Từ đó suy ra \(\dfrac{FV}{BD}=\dfrac{2FU}{BD}\) \(\Rightarrow FV=2FU\) hay U là trung điểm FV.

 Áp dụng bổ đề hình thang, ta dễ dàng suy ra O là trung điểm MN hay \(OM=ON\) (đpcm).

 (Bổ đề hình thang phát biểu như sau: Trung điểm của 2 cạnh đáy, giao điểm của 2 đường chéo và giao điểm của 2 đường thẳng chứa 2 cạnh bên của một hình thang thì thẳng hàng. Chứng minh khá dễ, mình nhường lại cho bạn tự tìm hiểu nhé.)

 

23 tháng 9 2023

Chỗ biến đổi này mình làm lại nhé:

Cần chứng minh: \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)

\(\Leftrightarrow TF.AB=2AF.TB\)

\(\Leftrightarrow\left(TA+AF\right)\left(AF+BF\right)=2AF\left(TA+AF+BF\right)\)

\(\Leftrightarrow TA.AF+TA.BF+AF^2+AF.BF=2TA.AF+2AF^2+2AF.BF\)

\(\Leftrightarrow TA.AF+AF^2+AF.FB=TA.BF\)

\(\Leftrightarrow AF\left(TA+AF+FB\right)=TA.BF\)

\(\Leftrightarrow AF.TB=TA.BF\)

\(\Leftrightarrow\dfrac{TA}{TB}=\dfrac{FA}{FB}\) (luôn đúng)

Vậy \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)

2 tháng 2 2021

mình ko biết

20 tháng 3 2016

tỉ số là 1

24 tháng 9 2023

Đầu tiên, ta có EF//AB và EH//AC. Theo định lí Thales, khi có hai đường thẳng song song cắt qua các đường thẳng tạo ra các đoạn thẳng có tỉ số bằng nhau, ta có thể kết luận rằng các đoạn thẳng tạo ra bởi các đường thẳng song song đó cũng có tỉ số bằng nhau. Vì vậy, ta có:

EF/AB = EH/AC

Tiếp theo, ta sẽ sử dụng định lí Bồi thường. Theo định lí Bồi thường, khi có hai đường thẳng song song cắt qua một đường thẳng, các đoạn thẳng tạo ra bởi các đường thẳng song song đó và đường thẳng cắt qua có tỉ số bằng nhau, thì các đoạn thẳng tạo ra bởi các đường thẳng song song đó cũng có tỉ số bằng nhau. Vì vậy, ta có:

FH/BC = EH/AC

Vì EF//AB và FH/BC = EH/AC, ta có FH//BC.

24 tháng 9 2023

giải ra đc ko ạ