Cho tam giác ABC, trên cạnh AC lấy điểm M sao cho AM = 2/3 AC. Nối B với M, trên BM lấy điểm N sao cho BN = 2/3 BM . Tìm tỉ số diện tích hai tam giác BCM và BAM, tỉ số diện tích hai tam giác ANM và BCM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\vec{AB} = \mathbf{a}\), \(\vec{AD} = \mathbf{b}\), và \(\vec{AM} = \frac{1}{2}\vec{AC}\).
Vì \(ABCD\) là hình thoi, nên \(\vec{AB} = \vec{DC} = -\vec{CB}\).
Do đó, \(\vec{CB} = -\mathbf{a}\) và \(\vec{AM} = \frac{1}{2}(\vec{AC}) = \frac{1}{2}(\vec{AD} + \vec{DC}) = \frac{1}{2}(\mathbf{b} - \mathbf{a})\).
Bây giờ, tính tích vô hướng \(\vec{MA} \times \vec{CB}\):
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} - \mathbf{a}) \times (-\mathbf{a})\]
Sử dụng tích vô hướng của vecto, ta có:
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} \times (-\mathbf{a})) - \frac{1}{2}(\mathbf{a} \times (-\mathbf{a})\]
Với \(\mathbf{b} \times (-\mathbf{a}) = -(\mathbf{a} \times \mathbf{b})\), và \(\mathbf{a} \times (-\mathbf{a}) = -\|\mathbf{a}\|^2\), ta có:
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{a} \times \mathbf{b}) + \frac{1}{2}\|\mathbf{a}\|^2\]
Nếu bạn có thông tin cụ thể về \(\mathbf{a}\) và \(\mathbf{b}\), bạn có thể tính toán giá trị này.