4. tìm tập hợp các số nguyên n biết:
a. 3 chia hết cho n - 1
b. n+ 2 là ước của 5n -1
5. có tồn tại cặp số nguyên (a,b) nào thỏa mãn đẳng thức sau:
a. -252a + 72b = 2013
b. 512a - 104 = -2002
giúp e với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(-252a+72b=2013\)
\(\Leftrightarrow252a=72b-2013\)
\(\Leftrightarrow a\frac{72b-2013}{252}\)
Vì \(2013\) chia \(252\) dư \(249\) .
\(\Rightarrow\) \(72b\) chia \(252\) dư \(249\)
Mà \(72b\) luôn chẵn , \(252\) luôn chẵn
\(\Rightarrow\) Không tồn tại a ; b
b ) \(512a-104=-2002\)
\(\Leftrightarrow512a=2106\)
\(\Leftrightarrow a=2106\div5\)
\(\Leftrightarrow a=\frac{2106}{5}\) ( Vô lí vì \(\frac{2106}{5}\notin\) Z )
\(\Rightarrow\) Không tồn tại giá trị a .
2.
a/ a-6b
=(a-b)-5b
Mà a-b chia hết cho 5; 5b chia hết cho 5
nên (a-b)-5b chia hết cho 5
b/2a-7b
=(2a-2b)-5b
=2(a-b)-5b
Mà a-b chia hết cho 5 nên 2(a-b) chia hết cho 5; 5b chia hết cho 5
Nên 2(a-b)-5b chia hết cho 5
c/26a-21b+2000
=5a+21a-21b+2000
=5a+21(a-b)+2000
có a-b chia hết cho 5 nên 21(a-b)chia hết cho 5; 5a chia hết cho 5; 2000 cũng chia hết cho 5
nên 5a + 21(a-b) + 2000 chia hết cho 5
3.
a. Gọi 2 số tự nhiên liên tiếp là a và a+1 (a ∈ Z)
Nếu a⋮2 thì bài toán được giải
Nếu a ⋮̸ 2 thì a = 2k + 1 ⇒ a + 1 = 2k + 2 ⋮ 2 (k ∈ Z)
b. Gọi ba số tự nhiên liên tiếp là a, a+1, a+2 (a ∈ Z)
Nếu a=3k thì a⋮3(k ∈ Z)
Nếu a=3k+1 thì a+2=3k+3⋮3(k ∈ Z)
Nếu a=3k+2 thì a+1=3k+3⋮3(k ∈ Z)
Giải
a, Ta thấy -252a là số chẵn và 72b cũng là số chắn (a,b thuộc Z)
=> -252a + 72b phải là số chẵn mà 2013 là số lẻ => Vô lý
=> Không tìm thấy giá trị a và b thỏa mãn
b, Ta có 512a -104 = 2002
=> 512a = 2002+104=2106
=> a = 2106 : 512= 1053/256 ko thuộc tập Z
=> không tìm thấy giá trị a thỏa mãn
4.
a, theo de bai ta co:
3 chia hết cho n -1 hay n-1 la uoc cua 3
=> n-1 \(\in\left\{1;3;-1;-3\right\}\)
Ta co bang:
vay n \(\in\left\{2;4;0;-2\right\}\)
con lai minh tịt