tìm số tự nhiên n để : n^2 + n + 1 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+8 chia hết cho n+2
=>3(n+2)+2 chia hết cho n+2
=>n+2 thuộc Ư(2)={1;2}
+/n+2=1=>n=-1
+/n+2=2=>n=0
vì n thuộc N
nên n=0
câu 2:
3n+5 chia hết cho n
=>5 chia hết cho n
=>n thuộc U(5)={1;5}
vì n khác 1 nên n=5
Câu 1 :
\(\frac{5}{x+1}\)\(=1\)
\(5:\left(x+1\right)=1\)
\(x+1=5:1\)
\(x+1=5\)
\(\Rightarrow x=4\)
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
a)Ta có:\(n+5⋮n-2\)
\(\Leftrightarrow n-2+7⋮n-2\)
\(\Leftrightarrow7⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(7\right)\)
Mà \(n\in N\Rightarrow n-2\ge-2\)
\(\Leftrightarrow n-2\in\left\{-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{1,3,9\right\}\)
b)\(n^2+3⋮n+1\)
\(\Leftrightarrow n^2+n-n+3⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)-n-1+4⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)-\left(n+1\right)+4⋮n+1\)
\(\Leftrightarrow4⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(4\right)\)
Mà \(n\in N\Rightarrow n+1\ge1\)
\(\Leftrightarrow n+1\in\left\{1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{0,1,3\right\}\)
đặt a=1 n + 2 n + 3 n + 4 n
Nếu n=0 ⇒A=4⇒A=4( loại )
Nếu n=1 ⇒A=10⇒A=10( thỏa )
Nếu n>2 .
TH1 : n chẵn ⇒n=2k(k∈N)⇒n=2k(k∈N)
⇒A=1+22k+32k+42k
=1+4k+9k+16k
⇒A=1+22k+32k+42k
=1+4k+9k+16k
Với k lẻ => k=2m+1
⇒A=1+42m+1+92m+1+162m+1
=1+16m.4+81m.9+256m.16
⇒A=1+42m+1+92m+1+162m+1
=1+16m.4+81m.9+256m.16
Dễ CM : A⋮/5A⋮̸5 vì A chia 5 dư 1 .
TH2: n lẻ => n=2h+1
⇒A=1+16h.4+81h.9+256h.16
⇒A=1+16h.4+81h.9+256h.16
TT như trên ; ta cũng CM được A không chia hết cho 5
Vậy n=1 thỏa mãn
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10