Tìm x để A là số nguyên
\(A=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
\(A=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{1}{\sqrt{x}-2}\)
vậy \(A=\frac{1}{\sqrt{x}-2}\)
A có nghĩa khi \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
vậy \(x=4\) thì A có nghĩa
b) theo ý a) \(A=\frac{1}{\sqrt{x}-2}\)
theo bài ra \(A>2\) \(\Leftrightarrow\frac{1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-2>0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{1-2\sqrt{x}+4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\frac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
\(\Rightarrow\hept{\begin{cases}5-2\sqrt{x}>0\\\sqrt{x}-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}5-2\sqrt{x}< 0\\\sqrt{x}-2< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-2\sqrt{x}>-5\\\sqrt{x}>2\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}< -5\\\sqrt{x}< 2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{25}{4}\\x>4\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{25}{4}\\x< 4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\notin\varnothing\end{cases}}\)
vậy \(4< x< \frac{25}{4}\) thì \(A>2\)
b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)
\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)
Đối chiếu điều kiện ta có:
\(x\in\left\{1,16,25\right\}\)
Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\) Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)
\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)
Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)
Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)
Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)
Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)
Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều
P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ!
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
Điều kiện: \(x\ge0\)
Vì tử không âm và mẫu dương nên \(A\ge0\)
\(A=\frac{3\sqrt{x}}{\sqrt{x}+2}=3-\frac{6}{\sqrt{x}+2}\le3-\frac{6}{2}=0\)
Do đó, \(A=0\Leftrightarrow x=0\)
Vậy...