Cho hệ phương trình: \(\hept{\begin{cases}mx-y=1\\my-x=m\end{cases}}\)
Tìm giá trị m để hệ phương trình trên có nghiệm duy nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mx+y=m
<=>mx-m=-y
<=>m(x-1)=-y(1)
x+my=1
<=>x-1=-my
<=>m(x-1)=-m^2y(2)
Thay (1) vào (2) ta có:
-y=-m^2y
<=> y=m^2y
<=>m^2=1
=>m thuộc{1;-1}
Vậy m thuộc{-1;1}
Để hệ pt có nghiệm duy nhất thì : a/a' # b/b' => m/1 # 1/m
=> m^2 # 1 => m # 1 hoặc m # -1
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
Thế vào phương trình 2x +my = 8 ta được. 2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m.
Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm.
Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m -2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất.
Vậy hệ đã cho có nghiệm với mọim, và khi m khác 4 thì hệ ...
Ta có: \(\hept{\begin{cases}x-my=m+3\left(1\right)\\mx-4y=\left(-2\right)\left(2\right)\end{cases}}\)
Từ (1), suy ra \(my=\left(m+3\right)+x\)(3)
Thay (3) vào 2. Ta có: \(mx-4\left[\left(m+3\right)+x\right]=-2\)
\(\Leftrightarrow mx-\left(4m-12+x\right)=-2\)
\(\Leftrightarrow6mx=-11\)
\(\Leftrightarrow mx=\left(-11\right):6=-\frac{11}{6}\)(4)
Để hệ phương trình có nghiệm duy nhất (x;y) với x +y > 0 khi PT (4) có nghiệm duy nhất
\(\Leftrightarrow m\ne0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}y=m-mx\left(1\right)\\x+my=1\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta có: x+m(m-mx)=1
\(\Leftrightarrow\)x+m2-m2x=1
\(\Leftrightarrow\)x(1-m2)+(m2-1)=0
\(\Leftrightarrow\)(x-1)(1-m2)=0
Ta biện luận phương trình trên:
+)Với m\(\ne\)\(\pm1\) thì hpt có 1 n0 duy nhất là (x;y):(1;0)
+)Với m = \(\pm1\) thì hpt có vô số nghiệm là (x;y):(x;\(\pm1\))
Vậy .....................
bạn tự hoàn thiện nha
chúc bạn học tốt (đừng quên k cho mình nhé! thank you very much)
\(\hept{\begin{cases}mx-y=1\\my-x=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=mx-1\\m\left(mx-1\right)-x=m\end{cases}\Leftrightarrow}\hept{\begin{cases}y=mx-1\\m^2x-m-x=m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=mx-1\\x=\frac{2m}{m^2-1}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2m^2-m^2+1}{m^2-1}\\x=\frac{2m}{m^2-1}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{m^2+2}{m^2-1}\\x=\frac{2m}{m^2-1}\end{cases}}}\)
Để hệ phương trình có nghiệm duy nhất thì m\(\ne\pm1\)