Từ điểm M ngoài (O;R) kẻ hai tiếp tuyến MA; MB của (O); MO cắt cung lớn AB tại C và cắt AB tại H. Gọi D, E lần lượt là hình chiếu vuông góc của C trên MA, MB.
a) Chứng minh tứ giác CHBE nội tiếp
b) Chứng minh góc CBE = góc CDH
c) Chứng minh CH2= CD.
d) Giả sử OM = 2R. Xác định tâm và bán kính đường tròn ngoại tiếp tam giác DHE theo R.
Giải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hà