Cho a,b là số nguyên dương thỏa mãn điều kiện a + b = 1
Ta có : \(P=\frac{a^4+1}{a}+\frac{b^4+1}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số nguyên dương a,b,c khác 0 thỏa mãn điều kiện: \(\frac{5b+2c\left(4+c^6\right)}{a+b+c}=1\)
\(b^4+c^4\ge\)\(b^3c+bc^3\) (bn tu cm nhé)
\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{bc\left(b^2+c^2\right)+a}=\frac{abc}{b^2c^2\left(b^2+c^2\right)+abc}=\frac{1}{b^2c^2\left(b^2+c^2\right)+1}=\)
\(\frac{a^2b^2c^2}{b^2c^2\left(b^2+c^2\right)+a^2b^2c^2}=\frac{a^2b^2c^2}{b^2c^2\left(a^2+b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)
ttu \(T\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) dau = xay ra khi va chi khi a=b=c=1
b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:
\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)
\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)
\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)
\(\Rightarrow A\ge2+4+2=8\)
"=" khi \(a=b=1\)
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
\(P=\frac{\left(a-b\right)^2\left(6a^2b^2+3a^3b+3ab^3+4\right)}{4ab}+\frac{17}{4}\ge\frac{17}{4}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
bạn làm khó hiểu quá .