Bài 4: Cho hệ phương trình mx + 2my = m +1 và x + (m+1)y = 2
a) CM nếu hệ có nghiệm duy nhất (x;y) thì điểm M(x;y) luôn thuộc một đường thẳng cố định.
b) Xác định m để điểm M(x;y) thuộc góc phần tư thứ nhất.
c) Xác định m để điểm M(x;y) thuộc đường tròn có tâm là gộc tọa độ và bán kính bằng \(\sqrt{5}\)
mx+2my=m+1 (1)
x+(m+1)y=2 (2)
Nếu m=0 => pt 1 là: 0.x+0.y=1 (vô nghiệm)
Nếu m=1 => pt 1 là: x+2y=1 và pt 2 là: x+2y=2 =>vô nghiệm.
=>m≠0 và m≠1
a) (2) – (1) => (1-m)x+(1-m)y=(1-m) => x+y=1. => M(x,y) nằm trên đường thẳng cố định x+y=1.
b) (2).m - 1 => m(m-1)y=m-1 =>y=1/m => x=1-1/m.
y>0 => m>0; x>0 => m<0 hoặc m>1. kết hợp 2 điều kiện => m>1
c) để M(x,y) nằm trong đường tròn (O;5) => (1/m)²+(1-1/m)² ≤ 5²
=>1/m²+1-2/m+1/m² ≤25
=>2/m² - 2/m - 24 ≤ 0
=>1/m² - 1/m - 12 ≤ 0.
Đặt t=1/m => t²-t-12≤ 0.
Phương trình: t²-t-12 = 0 có nghiệm -24 và 25
=> t²-t-12≤ 0 khi -24 ≤ t ≤ 25.
Nếu -24≤ t<0 => m thuộc (-∞; -1/24]
Nếu 0≤ t<25 => m>1/25 và m≠1 => m thuộc [1/25; 1) & (1; +∞)
=> m thuộc (-∞; -1/24]; [1/25; 1) & (1; +∞)