CHO TAM GIÁC ABC CÓ GÓC BAC=90 VẼ AM VUÔNG GÓC AC SAO CHO AM=AC, AN VUÔNG GÓC AB SAO CHO AN=AB. GỌI D LÀ TRUNG ĐIỂM BC . CHỨNG MINH
A, MN=2AD
B, DA VUÔNG GÓC MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB⊥AC(ΔABC vuông tại A)
HK⊥AC(Gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
b)Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
KH=IH(gt)
AH chung
Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)
Suy ra: AK=AI(hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân)
c) Vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) Vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
Bài 1:
a: Xét ΔABM và ΔANM có
AB=AN
\(\widehat{BAM}=\widehat{NAM}\)
AM chung
DO đó: ΔABM=ΔANM
Suy ra: MB=MN và \(\widehat{ABM}=\widehat{ANM}\)
=>\(\widehat{MBK}=\widehat{MNC}\)
b: Xét ΔMBK và ΔMNC có
\(\widehat{MBK}=\widehat{MNC}\)
MB=MN
\(\widehat{BMK}=\widehat{NMC}\)
Do đó:ΔMBK=ΔMNC
c: Ta có: ΔAKC cân tại A
mà AM là phân giác
nên AM là đường cao
a) Xét ΔAMB và ΔNMC có
MA=MN(gt)
\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔNMC(c-g-c)
b) Ta có: ΔAMB=ΔNMC(cmt)
nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{BCN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)
mà CD⊥AB(gt)
nên CD⊥CN
hay \(\widehat{DCN}=90^0\)
c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có
BH chung
HA=HI(gt)
Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)
Suy ra: AB=IB(hai cạnh tương ứng)
mà AB=CN(ΔAMB=ΔNMC)
nên IB=CN(đpcm)