Tìm số tự nhiên x,biết : A, 6(x+11)-7(2x)=26
2(x-1)-3(2x+2)-4(2x+3)=16
mn trả lời nhanh hộ mk zới came ơn mn trc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
Bài 6:
\(21,251+6,058+0,749+1,042\)
\(=\left(21,251+0,749\right)+\left(6,058+1,042\right)\)
\(=22+7,1\)
\(=29,1\)
___________________
\(1,53+5,309+12,47+5,691\)
\(=\left(1,53+12,47\right)+\left(5,309+5,691\right)\)
\(=14+11\)
\(=25\)
5:
a: =>x/17=5/17
=>x=5
b; =>6+x=7/11*33=21
=>x=15
c: \(\dfrac{12+x}{43-x}=\dfrac{2}{3}\)
=>3x+36=86-2x
=>5x=50
=>x=10
d: \(\dfrac{x}{5}< \dfrac{3}{7}\)
=>x<3/7*5
=>x<15/7
f: 15/26+x/16=46/52
=>x/16=23/26-15/26=8/26=4/13
=>x=4/13*16=64/13
\(3x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-1\\x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
\(\frac{\frac{6}{5}+\frac{6}{35}-\frac{6}{125}-\frac{6}{2009}-\frac{6}{2011}}{\frac{7}{5}+\frac{7}{35}-\frac{7}{125}-\frac{7}{2009}-\frac{7}{2011}}\)
\(=\frac{6.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}{7.(\frac{1}{5}+\frac{1}{35}-\frac{1}{125}-\frac{1}{2009}-\frac{1}{2011})}\)
\(=\frac{6}{7}\)
Tìm x
\(a,3x(2x+1)=0\)
\(\Rightarrow\hept{\begin{cases}3x=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
Vậy \(x=0\)hoặc \(x=\frac{-1}{2}\)
\(b.\frac{2}{3}-\frac{1}{3}(x-\frac{3}{2})-\frac{1}{2}(2x+1)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-x(\frac{1}{3}+1)=5\)
\(\frac{4}{3}x=\frac{2}{3}-5\)
\(\frac{4}{3}x=\frac{-13}{3}\)
\(x=\frac{-13}{3}\div\frac{4}{3}\)
\(x=\frac{-13}{4}\)
Chúc ban học tốt
Bài 2 :
a,\(\frac{x-1}{3}=2-\frac{x}{-2}\)
\(\Leftrightarrow\frac{x-1}{3}=\frac{-4-x}{-2}\Leftrightarrow-2x+2=-12-3x\Leftrightarrow x=-14\)
b, \(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow7x-7=6x+30\Leftrightarrow x=37\)
c, \(\frac{2x-1}{4}=\frac{4}{2x-1}\Leftrightarrow\left(2x-1\right)^2=16\)
\(\Leftrightarrow\left(2x-1\right)^2-4^2=0\Leftrightarrow\left(2x-5\right)\left(2x+3\right)=0\Leftrightarrow x=\frac{5}{2};-\frac{3}{2}\)
\(a)2\left(x+1\right)=3+2x\\ \Leftrightarrow2x+2=3+2x\\ \Leftrightarrow2x-2x=3-1\\ \Leftrightarrow0x=2\left(VN\right)\)
Vậy phương trình vô nghiệm
\(b)4x\left(1-x\right)-8=1-\left(4x^2+3\right)\\ \Leftrightarrow4x-4x^2-8=1-4x^2-3\\ \Leftrightarrow4x-8=-2\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(S=\left\{\dfrac{3}{2}\right\}\)
\(c)x^3+1=x\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=x\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-x+1-x\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2-2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{-1;1\right\}\)
\(d)\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(\Leftrightarrow 12\left(\dfrac{3x-2}{6}-5\right)=12.\dfrac{3-2\left(x+7\right)}{4}\)
\(\Leftrightarrow 6x-4-60=9-6\left(x+7\right)\)
\(\Leftrightarrow 6x-64=9-6x-42\)
\(\Leftrightarrow 6x-64=-6x-33\)
\(\Leftrightarrow 6x+6x=-33+64\\\Leftrightarrow 12x=31\\\Leftrightarrow x=\dfrac{31}{12}\)
Vậy \(S=\left\{\dfrac{31}{12}\right\}\)
\(a,\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\\dfrac{8}{5}+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{4}{5}\end{matrix}\right.\)
\(b,\dfrac{x-\dfrac{4}{7}}{x+\dfrac{1}{2}}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
\(c,\dfrac{2x-3}{x+\dfrac{7}{4}}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3< 0\\x+\dfrac{7}{4}>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3>0\\x+\dfrac{7}{4}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x >-\dfrac{7}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{7}{4}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-\dfrac{7}{4}< x< \dfrac{3}{2}\\x\in\varnothing\end{matrix}\right.\Leftrightarrow-\dfrac{7}{4}< x< \dfrac{3}{2}\)
Ngô Hải Nam ơi bn trả lời giúp mik ik
bài đó là bài 4^* tìm các số nguyên x để mỗi phân số sau đây là số nguyên