K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-2x+3\left|x-1\right|< 3\)

\(-3< x-1< 3\)

\(-2< x< 4\)

\(x\in\left\{-1;0;1;2;3\right\}\)

2 tháng 5 2022

      `x - ( 2x - 1 ) <= 3x - 3`

`<=> x - 2x + 1 <= 3x - 3`

`<=> 3x - x + 2x >= 1 + 3`

`<=> 4x >= 4`

`<=> x >= 1`

Vậy `S = { x | x >= 1 }`

2 tháng 5 2022

\(\Leftrightarrow x-2x+1\le3x-3\)

\(\Leftrightarrow-4x\le-4\)

\(\Leftrightarrow x\ge1\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

20 tháng 9 2020

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow-7x+3=-4x-15\)

\(\Leftrightarrow-7x+4x=-15-3\)

\(\Leftrightarrow-3x=-18\)

\(\Leftrightarrow x=6\)( tmđk )

Vậy x = 6 là nghiệm của phương trình

2) 2x + 3 < 6 - ( 3 - 4x )

<=> 2x + 3 < 6 - 3 + 4x

<=> 2x - 4x < 6 - 3 - 3

<=> -2x < 0

<=> x > 0

Vậy nghiệm của bất phương trình là x > 0

24 tháng 11 2019

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^2}=b\end{cases}}\)

\(\Rightarrow a+\sqrt[3]{x^3+1}< b+\sqrt[3]{b^3+1}\)

Dễ thấy hàm số dạng \(f\left(t\right)=t+\sqrt[3]{t^3+1}\)đồng biến trên R nên

\(\Rightarrow a< b\)

\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)

\(\Leftrightarrow2x^2-x-1>0\)

\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -\frac{1}{2}\end{cases}}\)

28 tháng 11 2019

Cách khác: Dùng liên hợp.

bpt <=> \(\left(\sqrt[3]{2x^2}-\sqrt[3]{x+1}\right)+\left(\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}\right)>0\)

<=> \(\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2}\right)^2+\sqrt[3]{2x^2}.\sqrt[3]{x+1}+\left(\sqrt[3]{x+1}\right)^2}\)

\(+\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2+1}\right)^2+\sqrt[3]{2x^2+1}.\sqrt[3]{x+2}+\left(\sqrt[3]{x+2}\right)^2}>0\)

<=> \(2x^2-x-1>0\)

2 tháng 4 2021

( x - 1 )( x + 2 ) > ( x - 1 )2 + 3

<=> x2 + x - 2 > x2 - 2x + 1 + 3

<=> x2 + x - x2 + 2x > 1 + 3 + 2

<=> 3x > 6 <=> x > 2

Vậy bpt có tập nghiệm { x | x > 2 }

x( 2x - 1 ) - 8 < ( 5 - 2x )( 1 - x )

<=> 2x2 - x - 8 < 2x2 - 7x + 5

<=> 2x2 - x - 2x2 + 7x < 5 + 8

<=> 6x < 13 <=> x < 13/6

Vậy bpt có tập nghiệm { x | x < 13/6 }

2 tháng 4 2016

Ta có: 1/(x-2) < 1/(3-2x)

 <> 1/(x-2) - 1/(3-2x) < 0

<> 3-2x-x+2 < 0

<> -3x < -5

<> x > 5/3

K đúng cho mk nha pạn!

2 tháng 4 2016

Mình tưởng bất phương trình thì không được khử mẫu? < 0 thì tử & mẫu trái dấu? ._.