Chứng minh các bất đẳng thức:
\(\left(a_1+a_2+...+a_n\right)^2\le n\left(a_1^2+a_2^2+...+a_n^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
Sửa đề: n \(\ge1\).
Với n =1, bất đẳng thức trở thành đẳng thức.
Với n =2, cần chứng minh: \(2\left(a_1^2+a_2^2\right)\ge\left(a_1+a_2\right)^2\Leftrightarrow\left(a_1-a_2\right)^2\ge0\) (đúng)
Giả sử nó đúng đến n = k, tức là ta có: \(k\left(a_1^2+a_2^2+...+a_k^2\right)\ge\left(a_1+a_2+...+a_k\right)^2\)
Hay là: \(\left(a_1^2+a_2^2+...+a_k^2\right)\ge\frac{\left(a_1+a_2+...+a_k\right)^2}{k}\)
Ta c/m nó đúng với n = k +1 or \(\left(k+1\right)\left(a_1^2+a_2^2+...+a_k^2+a_{k+1}^2\right)\ge\left(a_1+a_2+...+a_k+a_{k+1}\right)^2\)
Ta có: \(VT=\left(k+1\right)\left(a_1^2+a_2^2+...+a_k^2+a_{k+1}^2\right)\)
\(\ge\left(k+1\right)\left[\frac{\left(a_1+a_2+...+a_k\right)^2}{k}+\frac{a^2_{k+1}}{1}\right]\ge\frac{\left(k+1\right)\left(a_1+a_2+..+a_k+a_{k+1}\right)^2}{k+1}=VP\)
Vậy đpcm là đúng.
P/s: Chả biết đúng không, chưa check, đại khái hướng làm là dùng quy nạp.
delllllllllll bt