K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

a + 2 chia hết cho 2 và lớn hơn 2 nên là hợp số

a + 3 chia hết cho 3 và lớn hơn 3 nên là hợp số

a + 4 chia hết cho 4 và lớn hơn 4 nên là hợp số

....

a + 25 chia hết cho 25 và lớn hơn 25 nên là hợp số

14 tháng 12 2017

https://olm.vn/hoi-dap/question/118678.htm  Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k

16 tháng 7 2016

cu 2 so tu nhien lien tiep thi co 1 so chan 1 so le

suy ra: le + chan= le

ma so le ko chia het cho 2

suy ra tong hai so tu nhien lien tiep khong chia het cho 2

18 tháng 10 2017

a) trung bình cộng của 3 số đó là a

tổng là b

ta có : 3a = b

suy ra b chia hết cho 3

18 tháng 10 2017

a / Trong 3 số tự nhiên liên tiếp có 1 số CHC 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 .

Ta lấy hai số dư cộng lại => = 3 .

Nên 3 số tự nhiên liên tiếp bao giờ cũng chia hết cho 3 .

b/ Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4, 1 số chia 4 dư 1 , 1 số chia 4 dư 2 , 1 số chia 4 dư 3 .

Ta lấy 3 số dư cộng lại = 6 mả :

6 ko chia hết cho 4 nên :

4 số tự nhiên liên tiếp ko bao giờ chia hết cho 4 .

5 tháng 6 2017

a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.

b/ 

Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*) 
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6 

n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2 
=> A chia hết cho 2 

n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)

5 tháng 6 2017

a.

Image

b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3

mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2

vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6

13 tháng 8 2015

a.

ọi số thứ nhất là x, số thứ 2 là x + 1 

Có x . (x +1) = 111222 

<=> x² + x = 111222 

Cộng cả 2 vế với 1/4, ta có 

x² + x + 1/4 = 111222,25 

<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức) 

<=> (x + 1/2)² = 111222,25 

<=> x + 1/2 = 333,5 

<=> x = 333 

Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222

Còn lại mỏi tay quá

 

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

21 tháng 11 2015

a)

gọi 3 STN liên tiếp là a ;a+1;a+2

=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3

=> .. có

b)

gọi 4 STN liên tiếp là a;a+1;a+2;a+3

=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6

=> ko chia hết cho 4

 

 

8 tháng 1 2021

a) Chứng minh ba số tự nhiên liên tiếp chia hết cho 3

Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2\)

Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right)\)

+ Với \(n:3\)dư \(1\)\(\Rightarrow\)\(n=3k+1\)\(\left(k>0\right)\)

Thay \(n=3k+1\)vào \(n+2\)ta có: \(n+2=3k+1+2=3k+3⋮3\)

+ Với \(n:3\)dư \(2\)\(\Rightarrow\)\(n=3k+2\)\(\left(k>0\right)\)

Thay \(n=3k+1\)vào \(n+1\)ta có: \(n+1=3k+1+2=3k+3⋮3\)

Vậy ba số tự nhiên liên tiếp luôn chia hết cho 3

b) Chứng minh bốn số tự nhiên liên tiếp chia hết cho 4

Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2;\)\(n+3\)

Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right).\left(n+4\right)\)

+ Với \(n:4\)dư \(1\)\(\Rightarrow\)\(n=4k+1\)\(\left(k>0\right)\)

Thay \(n=4k+1\)vào \(n+3\)ta có: \(n+3=4k+1+3=4k+4⋮4\)

+ Với \(n:4\)dư \(2\)\(\Rightarrow\)\(n=4k+2\)\(\left(k>0\right)\)

Thay \(n=4k+2\)vào \(n+2\)ta có: \(n+2=4k+2+2=4k+4⋮4\)

+ Với \(n:4\)dư \(3\)\(\Rightarrow\)\(n=4k+3\)\(\left(k>0\right)\)

Thay \(n=4k+3\)vào \(n+1\)ta có: \(n+1=4k+1+3=4k+4⋮4\)

Vậy bốn số tự nhiên liên tiếp luôn chia hết cho 4

20 tháng 10 2021

\(a)\) Gọi ba số tự nhiên liên tiếp là \(a,a+1,a+2\)

Nếu \(a⋮3\) thì bài toán được chứng minh

Nếu \(a⋮3̸\) thì \(a=3k+1\) hoặc \(a=3k+2\left(k\in N\right)\)

Nếu \(a=3k+1\) thì \(a+2=3k+1+2=3k+3⋮3\)

(vì \(3k⋮3\)\(3⋮3\) nên\(3k+3⋮3\))

Nếu \(a=3k+2\) thì \(a+1=3k+2+1=3k+3⋮3\)

(vì \(3k⋮3\)\(3⋮3\) nên \(3k+3⋮3\))

Vậy trong ba số tự nhiên liên tiếp, có \(1\) số chia hết cho \(3\)