Giải phương trình :
\(\left(2x+2\right)\cdot\left(x^2+1\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-4\right)-\left(4x^2+4x+1\right)-2x+3x^2=0\)
\(\Leftrightarrow\left(x^2+3x^2-4x^2\right)+\left(-4x-2x\right)+\left(-4-1\right)=0\)
\(\Leftrightarrow-6x-5=0\Leftrightarrow x=-\frac{5}{6}\)
Vậy nghiệm phương trình là \(x=-\frac{5}{6}\)
\(\left(x-2\right)\left(x+2\right)-\left(2x+1\right)^2=x\left(2-3x\right)\)
\(\Leftrightarrow x^2-4-\left(4x^2+4x+1\right)=2x-3x^2\)
\(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)
\(\Leftrightarrow-5-6x=0\)
\(\Leftrightarrow-6x=5\Leftrightarrow x=\frac{-5}{6}\)
(x-1)(x2+3x-2)-(x3-1)=0
<=>(x-1)(x2+3x-2)-(x-1)(x2+x+1)=0
<=>(x-1)(x2+3x-2-(x2+x+1))=0
<=>(x-1)(x2+3x-2-x2-x-1)=0
<=>(x-1)(2x-3)=0
<=>x-1=0 hay 2x-3=0
<=>x=1 hay x=\(\frac{3}{2}\)
VẬY S=1;3/2 :)))))))))))))))))))))))))
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
\(\left(2x+2\right)\cdot\left(x^2+1\right)=0\)
\(\Leftrightarrow2x+2=0\left(\text{vì }x^2+1\ne0\right)\)
\(\Leftrightarrow2x=-2\text{ }\Leftrightarrow x=-1\)
\(\text{Vậy S}=\left\{-1\right\}\)
mong các bạn k đúng cho mình