K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\frac{x^2-2x+2018}{2018x^2}\)

\(=\frac{1}{2018}-\frac{2}{2018x}+\frac{1}{x^2}\)

\(=\left(\frac{1}{x}-\frac{1}{\sqrt{2018}}\right)^2\ge0\)

Vậy giá trị nhỏ nhất \(B=0\)khi và chỉ khi  \(\frac{1}{x}-\frac{1}{\sqrt{2018}}=0\)

\(\Rightarrow\frac{1}{x}=\frac{1}{\sqrt{2018}}\)

\(\Rightarrow x=\sqrt{2018}\)

31 tháng 3 2019

\(D=\frac{x^{2}-2x+2018}{x^{2}}\)

\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)

\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)

Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN

Mà \((x-1)^{2} \geq 0\) . Nên:

\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1

Thay x=1 vào D

GTNN D=2017

31 tháng 3 2019

xin lỗi mình lỡ tìm max rồi

12 tháng 9 2019

a. 

\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)

Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1

b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)

Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2

2 tháng 9 2018

\(B=\frac{x^2-2x+2018}{x^2}=\frac{2018x^2-2.2018.x+2018^2}{2018x^2}\)

\(=\frac{x^2-2.2018.x+2018^2}{2018x^2}+\frac{2017x^2}{2018x^2}\)

\(=\frac{\left(x-2018\right)^2}{x^2}+\frac{2017}{2018}\)

\(=\left(\frac{x-2018}{x}\right)^2+\frac{2017}{2018}\)

Vì : \(\left(\frac{x-2018}{x}\right)^2\ge0\forall x\)

Nên : \(B=\left(\frac{x-2018}{x}\right)^2+\frac{2017}{2018}\ge\frac{2017}{2018}\)

Vậy \(B_{min}=\frac{2017}{2018}\) khi x = 2018

2 tháng 9 2018

\(\Leftrightarrow Bx^2-x^2+2x-2018=0\)
\(\Leftrightarrow\left(B-1\right)x^2+2x-2018=0\)
Để tồn tại x thì \(\Delta^'\ge0\)
\(\Leftrightarrow1+2018\left(B-1\right)\ge0\)
\(\Leftrightarrow B\ge\frac{2017}{2018}\)
Vậy MinB=2017/2018, dấu bằng xảy ra khi x=2018
 

23 tháng 10 2019

TXĐ: \(D=\left(-1;1\right)\)

\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)

\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)

Đặt  \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)

=> \(\sqrt{1-x^2}.A=2018x+2020\)

=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)

<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)

pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)

<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)

<=> \(A^2-8076\ge0\)

<=> \(A\ge\sqrt{8076}\)

"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)

Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại  \(x=-\frac{1009}{1010}\)

14 tháng 3 2021

\(P-\dfrac{2}{3}=\dfrac{x^2-6x+9}{3x^2}=\dfrac{\left(x-3\right)^2}{3x^2}\ge0\Rightarrow P\ge\dfrac{2}{3}\).

Dấu "=" xảy ra khi x  =  3.

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)