K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

ko biết

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

1 tháng 7 2015

1) <=> 1 - sin2x + sin x + 1 = 0 

<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1

+) sin x = 0 <=> x = k\(\pi\)

+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)

2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0 

\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx =  \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)

cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)

cosx =  \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) +  k2\(\pi\)

Vậy....3) chia cả 2 vế cho 2 ta được:\(\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=\frac{1}{2}\) <=> \(\cos\frac{\pi}{3}\sin x\sin-\sin\frac{\pi}{3}\cos x=\sin\frac{\pi}{6}\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\sin\frac{\pi}{6}\)<=> \(x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\) hoặc \(x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\)<=> \(x=\frac{\pi}{2}+k2\pi\) hoặc \(x=\frac{7\pi}{6}+k2\pi\)Vậy.... 
1 tháng 7 2015

1)  Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m

|x2 - 1| = m4 - m2 + 1   

<=> x2 - 1 = m4 - m2 + 1    (1)  hoặc x2 - 1 = - ( m4 - m2 + 1 )    (2)

Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)

Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân  biệt

(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt

(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0 

<=> m \(\ne\) 0 và 1 - m2 > 0 

<=> m \(\ne\) 0  và -1 < m < 1

Vậy với  m \(\ne\) 0  và -1 < m < 1 thì pt đã cho có 4 nghiệm pb

20 tháng 6 2018

1. \(2x^2-\left(3m+1\right)x+m^2-m-6=0\)

\(\Delta=b^2-4ac=\left[-\left(3m+1\right)\right]^2-4.2.\left(m^2-m-6\right)=9m^2+6m+1-8m^2+8m+48=m^2+14m+49=\left(m+7\right)^2\ge0\forall m\)

=> PT có 2 nghiệm với mọi m.

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-\left(3m+1\right)\right]}{2}=\dfrac{3m+1}{2}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{m^2-m-6}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\)

\(\Rightarrow\dfrac{m^2-m-6}{2}< 0\Leftrightarrow m^2-m-6< 0\Leftrightarrow-2< m< 3\)

Vậy -2<m<3 thì pt có 2 nghiệm trái dấu.

2. \(mx^2+2\left(m-4\right)x+m+7=0\)

\(\Delta=b^2-4ac=\left[2\left(m-4\right)\right]^2-4.m.\left(m+7\right)=4\left(m^2-8m+16\right)-4m^2-28m=4m^2-32m+64-4m^2-28m=-60m+64\)

Để pt có 2 nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Rightarrow-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)

=> PT có 2 nghiệm với \(m\le\dfrac{16}{15}\)

Theo Vi-ét, ta có:

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m-4\right)}{m}=\dfrac{-2m+8}{m}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{m+7}{m}\end{matrix}\right.\)

Ta có hpt: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+8}{m}\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+8}{m}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(2x_2+x_2\right)=-2m+8\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3mx_2=-2m+8\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-2m+8}{3m}\\x_1=2.\dfrac{-2m+8}{3m}\end{matrix}\right.\)

Thay \(x_1;x_2\) vào P:

\(\dfrac{2\left(-2m+8\right)}{3m}.\dfrac{-2m+8}{3m}=\dfrac{m+7}{m}\Leftrightarrow\dfrac{2\left(8-2m\right)^2}{9m^2}-\dfrac{m+7}{m}=0\Leftrightarrow\dfrac{2\left(64-32m+4m^2\right)}{9m^2}-\dfrac{9m\left(m+7\right)}{9m^2}=0\Leftrightarrow\dfrac{128-64m+8m^2-9m^2-63m}{9m^2}=0\Leftrightarrow-m^2-127m+128=0\)(1)

Ta có: a+b+c=-1-127+128=0

=> PT (1) có 2 nghiệm \(m_1=1\left(nhận\right);m_2=\dfrac{c}{a}=\dfrac{128}{-1}=-128\left(nhận\right)\)

Vậy m=1;m=-128 thì pt đề cho có 2 nghiệm thỏa đề bài.

3. \(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)

\(\Delta=b^2-4ac=\left(4m+1\right)^2-4.1.\left[2\left(m-4\right)\right]=16m^2+8m+1-8m+32=16m^2+33>0\forall m\) => PT luôn có 2 nghiệm phân biệt với mọi m.

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(4m+1\right)}{1}=-4m-1\\P=x_1x_2=\dfrac{c}{a}=\dfrac{2\left(m-4\right)}{1}=2m-8\end{matrix}\right.\)

Ta có hpt: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m-1\\2x_1x_2=4m-16\end{matrix}\right.\Leftrightarrow x_1+x_2+2x_1x_2=-17\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Bài 1:
\(|6+2x|=3\Rightarrow \left[\begin{matrix} 6+2x=3\\ 6+2x=-3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-9}{2}\end{matrix}\right.\)

Tổng các nghiệm của PT: \(\frac{-3}{2}+\frac{-9}{2}=-6\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Bài 2:

ĐKXĐ: $m\leq 0$

PT có nghiệm $x=1$ khi:

$1^3-3m.1^2+m.1+m^2-4+\sqrt{-m}=\sqrt{-m}$

$\Leftrightarrow m^2-2m-3=0$

$\Leftrightarrow (m-3)(m+1)=0$

$\Rightarrow m=3$ hoặc $m=-1$

Mà $m\leq 0$ nên $m=-1$

Đáp án C.