Cho biểu thức: A = (-a - b + c) - (-a - b - c)
Rút gọn A
Giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(a-b+c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2\\ =2\left(\left(a-b+c\right)^2-\left(b-c\right)^2\right)\)
\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)\\ =2\left(a-2b+2c\right)a \)
\(=2a^2-4ab+4ac\)
1: \(B=\dfrac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}=\dfrac{x^2-x}{x\left(2x+1\right)}=\dfrac{x-1}{2x+1}\)
2: \(C=A:B\)
\(=\dfrac{x-1}{x^2}:\dfrac{x-1}{2x+1}=\dfrac{2x+1}{x^2}\)
\(C+1=\dfrac{2x+1+x^2}{x^2}=\dfrac{\left(x+1\right)^2}{x^2}>=0\)
=>C>=-1
a)
\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)
\(A=-a-b+c-\left(-a\right)+b+c\)
\(A=-a+\left(-b\right)+c+a+b+c\)
\(A=\left[\left(-a\right)+a\right]+\left[\left(-b\right)+b\right]+\left(c+c\right)\)
\(A=0+0+2c\)
\(A=2c\)
____________________________________________________________________________
b)
Cách 1 : \(A=\left(-1-\left(-1\right)+\left(-2\right)\right)-\left(1-\left(-1\right)-\left(-2\right)\right)\)
\(A=-1-\left(-1\right)+\left(-2\right)-\left(-1\right)+\left(-1\right)+\left(-2\right)\)
\(A=-1+1+\left(-2\right)+1+\left(-1\right)+\left(-2\right)\)
\(A=\left[\left(-1\right)+1+1+\left(-1\right)\right]+\left[\left(-2\right)+\left(-2\right)\right]\)
\(A=0+\left(-4\right)=\left(-4\right)\)
Cách 2 : Từ ý a suy ra :
\(A=\left(-2\right)\cdot2=\left(-4\right)\)
a) Ta có: -a - b - b = -a - b + c
Vậy: (-a-b+c) - (-a-b-c) = (-a-b+c) - (-a-b+c) = (-a-b+c) : 2
b) (-1-1+-2) : 2 = (-2+-2) : 2 = (-4) : 2 = -2
a, A=(-a+ b - c) - (-a - b - c)
A= -a + b - c + a + b + c
A= (-a + a) + (-c + c) + (b + b)
A= 0 + 0 + 2b
A= 2b
học tốt
Ta có: \(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)
\(\Leftrightarrow A=-a-b+c+a+b+c\)
\(\Leftrightarrow A=2c\)
hok tốt!!