Cho A=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{70}CMR:\frac{4}{3}< A< \frac{5}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(A=\frac{1}{11}+\frac{1}{12}\)\(+\frac{1}{13}\)\(+....+\frac{1}{70}\)
CMR:\(\frac{4}{3}\)<A< 5/2
a)ta có:
\(\frac{3}{10}\)>\(\frac{3}{15}\)
\(\frac{3}{11}\)>\(\frac{3}{15}\)
...
\(\frac{3}{14}\)>\(\frac{3}{15}\)
Cộng từng vế của bất đẳng thức trên ta được:
\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)
Hay S>\(\frac{15}{15}\)=>S>1 (1)
ta có :
\(\frac{3}{11}\)<\(\frac{3}{10}\)
\(\frac{3}{12}\)<\(\frac{3}{10}\)
...
\(\frac{3}{14}\)<\(\frac{3}{10}\)
Cộng từng vế của bất đẳng thức trên ta được:
\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)
Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2
Vậy S<2 (2)
Theo câu 1 ta có : S>1
Theo câu 2 ta có :S<2
Vậy 1<S<2
=>S ko phải số tự nhiên
ta có: \(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{60}\right)+...+\frac{1}{70}\)
mà \(\frac{1}{11}+...+\frac{1}{20}>\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{21}+...+\frac{1}{30}>\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{31}+...+\frac{1}{60}>\frac{1}{60}+...+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+...+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}\)
\(\Rightarrow A>\frac{4}{3}\left(1\right)\)
ta có: \(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)
mà \(\frac{1}{11}+...+\frac{1}{20}< \frac{1}{11}+...+\frac{1}{11}=\frac{10}{11}< \frac{10}{10}=1\)
\(\frac{1}{21}+...+\frac{1}{30}< \frac{1}{21}+...+\frac{1}{21}=\frac{10}{21}< \frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{31}+...+\frac{1}{40}< \frac{1}{31}+...+\frac{1}{31}=\frac{10}{31}< \frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{41}+...+\frac{1}{50}< \frac{1}{41}+...+\frac{1}{41}=\frac{10}{41}< \frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{51}+...+\frac{1}{60}< \frac{1}{51}+...+\frac{1}{51}=\frac{10}{51}< \frac{10}{50}=\frac{1}{5}\)
\(\frac{1}{61}+...+\frac{1}{70}< \frac{1}{61}+...+\frac{1}{61}=\frac{10}{61}< \frac{10}{60}=\frac{1}{6}\)
\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)\)
\(=1+1+\frac{9}{20}< 1+1+\frac{10}{20}=\frac{5}{2}=2,5\)
\(\Rightarrow A< 2,5\left(2\right)\)
từ (1); (2) \(\Rightarrow\frac{4}{3}< A< 2,5\left(đpcm\right)\)
CHÚC BN HỌC TỐT!
Bạn vô câu hỏi tương tự để tham khảo nha!!!