nhớ vẽ hình và nêu GT ,KL nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a, xét tam giác CMA và tam giác BMD có : AM = MD (gt)
BM = CM do AM là trung tuyến (gt)
góc CMA = góc BMD (đối đỉnh)
=> tam giác CMA = tam giác BMD (c - g - c)
=> BD = AC (đn)
Vẽ hình, GT và KL cho định lí hai góc cùng bù với một góc thú ba thì chúng bằng nhau
Nhớ vẽ hình nhé
x O y z t
\(GT:\widehat{xOz}+\widehat{yOz}=180^o\)
\(\widehat{yOz}+\widehat{yOt}=180^o\)
\(KL:\widehat{xOz}=\widehat{yOt}\)
giả thiết: 1 đường thẳng vuông góc với một trong 2 đường thẳng
kết luận: nó vuông góc với đường thẳng còn lại.
BẬT MÍ CHO BẠN NÈ: GIẢ THIẾT LÀ NHỮNG CHỮ Ở SAU TỪ ''NẾU''
KẾT LUẬN LÀ NHỮNG CHỮ SAU TỪ THÌ
a b c
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét tứ giác EFBC có
A là trung điểm của EB
A là trung điểm của CF
Do đó: EFBC là hình bình hành
Suy ra: EF=BC
1. Xét tam giác ABD và tam giác AED có:
\(\text{+}\) AD chung.
\(\text{+}\) \(\widehat{BAD}=\widehat{EAD}\) (AD là phân giác).
\(\text{+}\) AB = AE (gt).
\(\Rightarrow\) Tam giác ABD = Tam giác AED (c - g - c).
2. a) Tam giác ABD = Tam giác AED (cmt).
\(\Rightarrow\) \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng).
Mà \(\widehat{ABD}+\widehat{KBD}=\)\(180^o.\)
\(\widehat{AED}+\widehat{CED}=\)\(180^o.\)
\(\Rightarrow\) \(\widehat{KBD}=\widehat{CED} (đpcm).\)
b) Xét tam giác KBD và tam giác CED có:
\(\text{+}\) \(\widehat{KBD}=\widehat{CED} \) (cmt).
\(\text{+}\) BD = ED (Tam giác ABD = Tam giác AED).
\(\text{+}\) \(\widehat{BDK}=\widehat{EDC}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác KBD = Tam giác CED (g - c - g).
3. Ta có: KE = KD + DE; CB = CD + DB.
Mà KD = CD (Tam giác KBD = Tam giác CED).
DE = DB (Tam giác ABD = Tam giác AED).
\(\Rightarrow\) KE = CB.
Xét tam giác KBE và tam giác CEB có:
\(\text{+}\) KE = CB (cmt).
\(\text{+}\) BK = EC (Tam giác KBD = Tam giác CED).
\(\text{+}\) BE chung.
\(\Rightarrow\) Tam giác KBE = Tam giác CEB (c - c - c).
4. Ta có: DE \(\perp\) AC (gt). => Tam giác AED vuông tại E.
Mà tam giác ABD = tam giác AED (cmt).
\(\Rightarrow\) Tam giác ABD vuông tại B.
\(\Rightarrow\) \(\widehat{ABD}\) \(=90^o.\)
\(\Rightarrow\) Tam giác ABC vuông tại B.
Vậy để DE \(\perp\) AC thì tam giác ABC vuông tại B.
a: Ta có: a\(\perp\)c
b\(\perp\)c
Do đó: a//b
còn câu b nữa ạ