Cho a,b,c khác 0; a2+2bc khác 0 ;b2+2ca khác 0; c2+2ab khác 0 và a2+b2+c2=(a+b+c)2
cmr : S=a2/a2+2bc + b2/b2+2ac + c2/c2+2ab =1
M=bc/a2+2bc + ca/b2+2ac + ab/c2+2ab=1
giúp mk nha
mk cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2+b2+c2=(a+b+c)2<=> ab+bc+ca=0
\(\Rightarrow S=\frac{a^2}{a^2+bc-\left(ab+ca\right)}+\frac{b^2}{b^2+ac-\left(ab+bc\right)}+\frac{c^2}{c^2+ab-\left(bc+ca\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}-\frac{c^2}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
M tương tự