Tìm x:\(\left(13.3^{x-2}-3^x\right):2=162\) biết \(x\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(13.3x-2-3x):2=162
<=>3x-2(13-32)=162.2
<=>3x-2.4=324
<=>3x-2=324:4
<=>3x-2=81=34
<=>x-2=4
<=>x=6
Vậy...
Ta có: \(\left(13.3^{x-2}-3^x\right)\div2=162\)
\(\Leftrightarrow13.3^{x-2}-3^{x-2+2}=162.2\)
\(\Leftrightarrow13.3^{x-2}-3^2.3^{x-2}=324\)
\(\Leftrightarrow\left(13-9\right).3^{x-2}=324\)
\(\Leftrightarrow4.3^{x-2}=324\)
\(\Leftrightarrow3^{x-2}=\dfrac{324}{4}=81=3^4\)
\(\Leftrightarrow3^{x-2}=3^4\Leftrightarrow x-2=4\Leftrightarrow x=6\)
Vậy \(x=6\)
Ta có :
\(\left(13.3^{x-2}-3x\right):2=162\)
\(\Rightarrow3^{x-2}\left(13-3^2\right)=162.2\)
\(\Rightarrow3^{x-2}.4=324\)
\(\Rightarrow3^{x-2}=324:4\)
\(3^{x-2}=81\)
\(3^{x-2}=3^4\)
\(\Rightarrow x-2=4\)
\(x=4+2\)
\(x=6\)
Vậy \(x=6\) là giá trị cần tìm
~ Chúc bn học tốt ~
Vì \(\left(x-5\right)^{2018}\ge0;\left|2y^2-162\right|^{2018}\ge0\Rightarrow\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}\ge0\)
mà \(\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}=0\)
Dấu ''='' xảy ra khi x = 5 ; \(2y^2=162\Leftrightarrow y^2=81\Leftrightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Vì \(\left(x-5\right)^{2018}\ge0\\ \left|2y^2-162\right|^{2018}\ge0\\ \)
Suy ra phương trình dc thỏa mãn khi và chỉ khi x-5 = 0 và 2y^2-162=0
\(\left\{{}\begin{matrix}\left(x-5\right)^{2018}=0\\\left|2y^2-162\right|^{2018}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\2\left(y^2-81\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\pm9\end{matrix}\right.\)
a) -1 - 2(-3 + 2|x|) = -7
=> 2(-3 + 2|x|) = -1 + 7
=> 2(-3 + 2|x|) = 6
=> -3 + 2|x| = 6 : 2
=> -3 + 2|x| = 3
=> 2|x| = 3 + 3
=> 2|x| = 6
=> |x| = 6 : 2
=> |x| = 3
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
=> x = 0
Vậy ...
(13.3x - 3x) : 2 = 162
=> (13 - 1).3x = 162 . 2
=> 12.3x = 324
=> 3x = 324 : 12
=> 3x = 27
=> 3x = 33
=> x = 3
Vậy ...
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{8}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
TL:
\(\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{\left(2x-2\right)2x}\right)=\frac{1}{8}\)
\(\frac{1}{2}-\frac{1}{4x}=\frac{1}{8}\)
\(\frac{1}{4x}=\frac{3}{8}\)
=>x=2/3
hc tốt
\(f\)) \(32^{-x}.16^x=1024\)
\(\left(2\right)^{-5x}.2^{4x}=2^{10}\)
\(\Leftrightarrow2^{4x-5x}=2^{10}\)
\(\Leftrightarrow2^{-x}=2^{10}\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
\(g\)) \(3^{x-1}.5+3^{x-1}=162\)
\(3^{x-1}.\left(5+1\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)
\(3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
\(h\)) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=\left(1,-1\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=-1\\2x-1=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=0\\2x=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=0\\x=1\end{cases}}\)
\(i\)) \(5^x+5^{x+2}=650\)
\(5^x.\left(1+5^2\right)=650\)
\(5^x.26=650\)
\(5^x=650:26\)
\(5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
Trả lời hộ mình đi. Mình sắp phải nộp rồi!!!
Ta có : \(\left(13.3^{x-2}-3^x\right):2=162\)
\(\implies\) \(13.3^{x-2}-3^x=162.2\)
\(\implies\) \(13.3^{x-2}-3^{x-2}.3^2=324\)
\(\implies\) \(3^{x-2}.\left(13-3^2\right)=324\)
\(\implies\) \(3^{x-2}.4=324\)
\(\implies\) \(3^{x-2}=324:4\)
\(\implies\) \(3^{x-2}=81\)
\(\implies\) \(3^{x-2}=3^4\)
\(\implies\) \(x-2=4\)
\(\implies\) \(x=4+2\)
\(\implies\) \(x=6\)