K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

20 tháng 2 2017

a)

\(\left(x^2-1\right)\left(x^2+4x+3\right)=\left(x-1\right)\left(x+1\right)\left[\left(x+2\right)^2-1\right]=\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)\)

\(\left[\left(x-1\right)\left(x+3\right)\right]\left[\left(x+1\right)\left(x+1\right)\right]=\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)

dặt x^2+2x-1=t(*)

(a) \(\Leftrightarrow\left(t-2\right)\left(t+2\right)=192\) \(\Leftrightarrow t^2-4=192\Rightarrow t^2=196\Rightarrow\left\{\begin{matrix}t=-14\\t=14\end{matrix}\right.\)

Thay t vào (*) => x (tự làm)

20 tháng 2 2017

a) (x-1)(x+1)(x+1)(x+3)=192. \(\Leftrightarrow\) (x+1)2(x-1)(x+3)=192 \(\Leftrightarrow\) (x2+2x+1) (x2+2x-3)=192 Đặt x2+2x+1=t thì x2+2x-3=t-4 ta có t(t-4)=192 \(\Leftrightarrow\) t2-4t-192=0 \(\Leftrightarrow\) t=-12 hoặc t=16 Với t=-12 thì (x+1)2=-12 ( vô lí ) Với t=16 thì (x+1)2=16 \(\Leftrightarrow\) x=-5 hoặc x=3 b) x\(^5\)+x4-2x4-2x3+5x3+5x2-2x2-2x+x+1=0 \(\Leftrightarrow\) x4(x+1)-2x3(x+1)+5x2(x+1)-2x(x+1)+(x+1)=0 \(\Leftrightarrow\) (x+1)(x4-2x3+5x2-2x+1)=0 \(\Leftrightarrow\) x=-1 ( CM x4-2x3+5x2-2x+1 vô nghiệm ) c) x4-x3-2x3+2x2+2x2-2x-x+1=0 \(\Leftrightarrow\) x3(x-1)-2x2(x-1)+2x(x-1)-(x-1)=0 \(\Leftrightarrow\) (x-1)(x3-2x2+2x-1)=0 \(\Leftrightarrow\) (x-1)(x-1)(x2-x+1)=0 \(\Leftrightarrow\) x-1=0 ( vì x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0 với mọi x) \(\Leftrightarrow\) x=1

6 tháng 6 2018

Bài 1. a) 4x - 3 = 0

⇔ x = \(\dfrac{3}{4}\)

KL.....

b) - x + 2 = 6

⇔ x = - 4

KL...

c) -5 + 4x = 10

⇔ 4x = 15

⇔ x = \(\dfrac{15}{4}\)

KL....

d) 4x - 5 = 6

⇔ 4x = 11

⇔ x = \(\dfrac{11}{4}\)

KL....

h) 1 - 2x = 3

⇔ -2x = 2

⇔ x = -1

KL...

Bài 2. a) ( x - 2)( 4 + 3x ) = 0

⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)

KL......

b) ( 4x - 1)3x = 0

⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)

KL.....

c) ( x - 5)( 1 + 2x) = 0

⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)

KL.....

d) 3x( x + 2) = 0

⇔ x = 0 hoặc x = -2

KL.....

6 tháng 6 2018

Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0

⇔ x - 10 ≥ 0

⇔ x ≥ 10

0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4

⇔ - 4x - 3 ≤ 9x - 4

⇔ 13x ≥1

⇔ x ≥ \(\dfrac{1}{13}\)

0 1/13

1 tháng 3 2020

1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)

1 tháng 3 2020

4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)

\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

9 tháng 6 2021

a) \(2\chi-3=3\left(\chi+1\right)\)

\(\Leftrightarrow2\chi-3=3\chi+3\)

\(\Leftrightarrow2\chi-3\chi=3+3\)

\(\Leftrightarrow\chi=-6\)

Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)

\(3\chi-3=2\left(\chi+1\right)\)

\(\Leftrightarrow3\chi-3=2\chi+2\)

\(\Leftrightarrow3\chi-2\chi=2+3\)

\(\Leftrightarrow\chi=5\)

Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)

b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)

\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)

c) \(\left|\chi-7\right|=2\chi+3\)

Trường hợp 1: 

Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)

Khi đó:\(\left|\chi-7\right|=2\chi+3\)

 \(\Leftrightarrow\chi-7=2\chi+3\)

\(\Leftrightarrow\chi-2\chi=3+7\)

\(\Leftrightarrow\chi=-10\) (KTMĐK)

Trường hợp 2:

Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)

Khi đó: \(\left|\chi-7\right|=2\chi+3\)

\(\Leftrightarrow-\chi+7=2\chi+3\)

\(\Leftrightarrow-\chi-2\chi=3-7\)

\(\Leftrightarrow-3\chi=-4\)

\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)

\(\left|\chi-4\right|=5-3\chi\)

Trường hợp 1:  

Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow\chi-4=5-3\chi\)

\(\Leftrightarrow\chi+3\chi=5+4\)

\(\Leftrightarrow4\chi=9\)

\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)

Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow-\chi+4=5-3\chi\)

\(\Leftrightarrow-\chi+3\chi=5-4\)

\(\Leftrightarrow2\chi=1\)

\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)

 

 

 

 

3 tháng 2 2020

Câu 1 và câu 3 là sao vậy bn?

2) 3x2 + 6x = 0

⇔ x.(3x + 6) = 0

=> x = 0 hoặc 3x + 6 = 0

3x = -6

x = -2

Vậy ......

4) x2 - 4 - (x - 5)(2 - x) = 0

⇔ x2 - 4 - 2x + x2 + 10 -5x = 0

⇔ 2x2 - 7x + 6 = 0

⇔ (x - 2).(2x - 3) = 0

=> x - 2 = 0 hoặc 2x - 3 = 0

⇔ x = 2 hoặc 2x = 3

x = \(\frac{3}{2}\)

Vậy ...

5) x3 - 1 = x (x - 1)

⇔ x3 - 1 - x(x - 1) = 0

⇔ x3 - 1 - x2 + 1 = 0

⇔ x3 - x2 = 0

⇔ x2 . (x - 1) = 0

=> x2 = 0 hoặc x - 1 = 0

⇔ x = 0 hoặc x = 1

Vậy ....

6) (2 - x)(3x + 3)(4x - 1) = 0

=> 2 - x = 0 hoặc 3x + 3 = 0 hoặc 4x - 1 = 0

⇔ x = 2 hoặc 3x = -3 hoặc 4x = 1

x = -1 hoặc x = \(\frac{1}{4}\)

Vậy........

3 tháng 2 2020

Câu 1 và câu 3? :))

2. \(3x^2+6x=0\Leftrightarrow3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

4. \(x^2-4-\left(x-5\right)\left(2-x\right)=0\Leftrightarrow\left(x+2\right)\left(x-2\right)+\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\end{matrix}\right.\)

5. \(x^3-1=x\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=x\left(x-1\right)\)

\(\Leftrightarrow x^2+x+1=x\Leftrightarrow x^2+1=0\left(vl\right)\)\(x^2+1\ge1\forall x\)

Vậy, pt vô nghiệm

6. \(\left(2-x\right)\left(3x+3\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\3x+3=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{4}\end{matrix}\right.\)

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi

14 tháng 8 2015

cái bài này tìm nghiệm là ra mà bạn

31 tháng 12 2016

câu trả lời của thu hương rất hay!

Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không

 hiihhi