15.Cho p;p+10 là các số nguyên tố >3 CM p+32 là HS
16.Hãy chỉ ra 3000 số tự nhiên liên tiếp luôn là HS
17.Chứng tỏ hai số 1000^n-1;1000^n+1 với n>1 không thể đồng thời là SNT
18.Cho p và 8p-1 là các số nguyên tố CM8p+1 là HS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15-15-15+15+15=0
Nhớ k nha
mình k lại 100%
Rùi mình kết bạn luôn
Bai 1
đặt A = 1 + 15^4 + 15^8 + .... + 15^100
=> 15^4A = 15^4 + 15^8 + 15^12 + .... + 15^104
ta có
15^4A = 15^4 + 15^8 + 15^12 + .... + 15^100 + 15^104
-
A = 15^4 + 15^8 + 15^12 + .... + 15^100 + 1
50624A = 15^104 - 1
=> A = (15^104-1)/50624
bài 2 làm tương tự cũng đặt A và nhân A với 15^4 (bạn thông cảm mình không có nhiều thời gian)
S=(15+152+153)+...+ (1516+1517+1518)
S=(15+152+153)+...+1515.(15+152+153)
S=(15+152+153).(1+..+1515)
S=3615.(1+..+1515)
mà 3615 chia hết cho 241
=> S chia hết cho 241
\(\frac{3}{15}\cdot G=\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{68\cdot71}\)
\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)
\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{71}\)
\(G=\frac{60}{781}\cdot\frac{15}{3}\)
\(G=\frac{300}{781}\)
ta có :\(\frac{3}{15}G=\left(\frac{15}{11.14}+\frac{15}{14.17}+...+\frac{15}{68.71}\right)\)
\(\frac{3}{15}G=\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{68.71}\)
\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)
\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{71}=\frac{71}{781}-\frac{11}{781}=\frac{60}{781}\)
\(=>G=\frac{60}{781}:\frac{3}{15}=\frac{900}{2343}\)
vậy G =900/2343