tìm x /2017-x/+/2018-x/+/2019-x/=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |2017-x|>=x-2017
|2018-x|>=0
|2019-x|>=2019-x
=>|2017-x|+|2018-x|+|2019-x|>=2
Dấu = xảy ra <=> x>2017
x=2018
x<2019
Vậy x=2018
Với x < 2017
pt <=> (2017 - x) + 2018 - x + 2019 - x = 2
<=> 6054 - 3x = 2
<=> 3x = 6054 - 2 = 6052
<=> x = \(\frac{6052}{3}>2017\) (Loại)
Với \(2017\le x\le2018\)
pt <=> (x - 2017) + (2018 - x) + (2019 - x) = 2
<=> 2020 - x = 2
<=> x = 2020 - 2 = 2018 (Nhận)
Với \(2018< x\le2019\)
pt <=> (x - 2017) + (x - 2018) + (2019 - x) = 2
<=> x - 2016 = 2
<=> x = 2018 (loại)
Với \(2019< x\)
pt <=> (x - 2017) + (x - 2018) + (x - 2019) = 2
<=> 3x - 6054 = 2
<=> 3x = 6056
<=> x = \(\frac{6056}{3}< 2019\) (Loại )
Vậy , phương trình chỉ có một nghiệm x = 2018
|2017-x|+|2018-x|+|2019-x|=2
nên sẽ có ít nhất 1 giá trị bằng 0
1. |2017-x|=0
2017-x=0
x=2017
=>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn)
2.|2018-x|=0
2018-x=0
x=2018
=>|2017-x|+|2018-x|+|2019-x|=2(thỏa mãn)
3.|2019-x|=0
2019-x=0
x=2019 =>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn) Vậy x=2018 để thỏa mãn điều kiện|2017-x|+|2018-x|+|2019-x|=2
\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}+\dfrac{x-3}{2017}=3\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)+\left(\dfrac{x-3}{2017}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-1-2019}{2019}+\dfrac{x-2-2018}{2018}+\dfrac{x-3-2017}{2017}=0\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
Vi \(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\ne0\)
nên \(x-2020=0\)
\(\Leftrightarrow x=2020\)
Vậy ...
Đề là vậy phải không : | 2017 - x | + | 2018 - x | + | 2019 - x | = 2
Nếu x ≤ 2017 thì | 2017 - x | = 2017 - x
| 2018 - x | = 2018 - x
| 2019 - x | = 2019 - x
Pt (=) 2017-x+2018-x+2019-x = 2
(=) -3x + 6054 = 2
(=) 3x = 6052
(=) x = 6052/3 ( loại, vì > 2017 )
Nếu 2017 < x < 2018 thì | 2017 - x | = x - 2017 ; | 2018 - x | = 2018 - x ; | 2019 - x | = 2019 - x
Pt (=) x-2017+2018-x+2019-x = 2
(=) x = -2018 ( loại )
Nếu 2018 ≤ x ≤ 2019 thì | 2017-x| = x-2017 ; | 2018-x| = x-2018 ; | 2019-x | = 2019-x
Pt (=) x-2017+x-2018+2019-x = 2
(=) x = 2018 ( TM )
Nếu x > 2019 thì | 2017-x | = x-2017 ; | 2018-x | = x-2018 ; | 2019-x | = x-2019
Pt(=) x-2017+x-2018+x-2019 = 2
(=) 3x = 6056
(=) x = 6056/3 ( loại )
\(\left|2017-x\right|+\left|2018-x\right|+\left|2019-x\right|=2\left(1\right)\)
TH1: \(x\le2017\)
\(\left(1\right)\Leftrightarrow2017-x+2018-x+2019-x=2\)
\(\Rightarrow6054-3x=2\)
\(\Rightarrow3x=6052\)
\(\Rightarrow x=\frac{6052}{3}\)(loại)
TH2: \(2017< x\le2018\)
\(\left(1\right)\Leftrightarrow x-2017+2018-x+2019-x=2\)
\(\Rightarrow2020-x=2\)
\(\Rightarrow x=2018\)(thỏa mãn điều kiện)
TH3: \(2018< x\le2019\)
\(\left(1\right)\Leftrightarrow x-2017+x-2018+2019-x=2\)
\(\Rightarrow x-2016=2\)
\(\Rightarrow x=2018\)(thỏa mãn điều kiện)
TH4: \(x>2019\)
\(\left(1\right)\Leftrightarrow x-2017+x-2018+x-2019=2\)
\(\Rightarrow3x=6056\)
\(\Rightarrow x=\frac{6056}{3}\)(loại)
Vậy \(x=2018\)
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
Ta có:
VT=|x−2017|+|2019−x|+|2018−x|
⇒VT≥|x−2017+2019−x|+|2018−x|
⇒VT≥2+|2018−x|≥2
Dấu "=" xảy ra \(\Leftrightarrow\) x=2018
Vậy x=2018