17.Chứng tỏ hai số 1000^n-1;1000^n+1 với n>1 không thể đồng thời là SNT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : ( 2n + 7 ; 5n + 17 ) = d ( d thuộc N )
=> \(\hept{\begin{cases}2n+7⋮d\\5n+17⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}5\left(2n+7\right)⋮d\\2\left(5n+17\right)⋮d\end{cases}}\)
=> \(5\left(2n+7\right)-2\left(5n+17\right)⋮d\)
=> \(1⋮d\)
=> d = 1
Vậy ( 2n + 7 ; 5n + 17 ) = 1 ; hay 2n + 7 và 5n + 17 là hai số nguyên tố cùng nhau.
Gọi d =(A=2n+7; B=5n+17)
=. A ; B chia hết cho d
=>5A - 2B = 10n + 35 - 10n - 34 = 1 chia hết cho d
=> d =1
Vậy (A;B) =1
Gọi a =(A=2n+5; B=5n+12)
=. A ; B chia hết cho a
=>A5-B2=10n+25-10n+24=1chia hết cho a
=> a =1
Vậy (A;B) =1
Ta có \(17^n+1^n\) chia hết cho 18 nên chia hết cho 3
Vậy \(\left(17^n+1\right)\left(17^n+2\right)\) chia hết cho 3
Ta có: 17n chia 3 dư 1 hoặc dư 2
Nếu 17^n chia 3 dư 1 => 17^n + 2 chia hết cho 3 => Tích chia hết cho 3
Nếu 17^n chia 3 dư 2 => 17^n + 1 chia hết cho 3 => Tích chia hết cho 3
Vậy (17^n + 1)(17^n + 2) chia hết cho 3
ĐK đúng: n thuộc N