K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

\(\frac{x^{63}+x^{62}+...+x^2+x+1}{x^{31}+x^{30}+x^{29}+...+x^2+x+1}\)

hay \(\frac{1+x+x^2+...+x^{63}}{1+x+x^2+...+x^{31}}=\frac{x^{32}+x^{33}+x^{34}+...+x^{63}}{1}=x^{32}+x^{33}+x^{34}+...+x^{63}\)

14 tháng 11 2017

Bài này từ 2 năm trước rồi mà

20 tháng 11 2017

công nhận

21 tháng 6 2017

Rút gọn.

\(B=\dfrac{x^{39}x^{36}x^{33}...x^31}{x^{40}x^{38}x^{36}...x^21}=\dfrac{x^{\left(39+36+33+...+3\right)}}{x^{\left(40+38+36+...+2\right)}}\)

ta có: \(39+36+33+...+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)

\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)

=> \(B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)

Tương tự như B => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)

21 tháng 6 2017

Ta có:

\(B=\dfrac{x^{\left(39+36+33+....+3\right)}}{x^{\left(40+38+36+....+2\right)}}\)

\(39+36+33+....+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)

\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)

\(\Rightarrow B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)

tương tự => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)

27 tháng 2 2016

Thường thì phân số lớp 4 là tính ra luôn nhỉ?

27 tháng 2 2016

\(\frac{31x32-62}{30x31}=\frac{932}{930}=\frac{466}{465}\)

7 tháng 1 2019

5, 31+1240++1829=3100

6. -19+836+1829=2646

7.  54.43-32.35=2322-1120=1202

8 2018(31+16+50)=2018.97=195746

9. 16(34-21+55)=16.68=1088

10. 63(29-31-98)=63.(-100)=-6300

cả lời giải thì

mới được

bạn ạ

17 tháng 7 2016

\(\frac{1}{4}.\frac{2}{6}............\frac{31}{64}=2^x\)

\(\Rightarrow\frac{1.2........31}{2.2.2.3...........2.31.64}=2^x\)

\(\Rightarrow\frac{1}{2^{30}.2^4}=2^x\)

\(\Rightarrow\frac{1}{2^{34}}=2^x\)

\(\Rightarrow x=-34\)

20 tháng 5 2018

a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)

Do đó \(x\in\left\{0;1;2\right\}\)

25 tháng 7 2018

b)

\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)

\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)

18 tháng 2 2017

\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot......\cdot\frac{31}{64}=2^x\)

\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot31}{4\cdot6\cdot8\cdot....\cdot64}=2^x\)

\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot31}{\left(2\cdot2\right)\cdot\left(3\cdot2\right)\cdot\left(4\cdot2\right)\cdot.....\cdot\left(2\cdot32\right)}=2^x\)

\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{\left(2\cdot2\cdot2\cdot....\cdot2\right)\left(1\cdot2\cdot3\cdot.....\cdot31\right)\cdot32}=2^x\)

\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)

\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)

\(\Rightarrow x=-36\)