Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D (D khác B,C) . Trên tia đối của tia CB, lấy điểm E sao cho CE=BD. Các đường thẳng vuông góc với BC kẻ từ D và E lần lượt cắt AB và AC tại M và N. CMR :
1. DM=EN
2. Đường thẳng BC cắt MN tại I là trung điểm của MN và BC<MN
3. Đường vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên BC.
Tớ sex tick cho.
1, Vì △ABC cân tại A => AB = AC và ^ABC = ^ACB
Mà ^ACB = ^ECN (2 góc đối đỉnh)
=> ^ABC = ^ECN
Xét △DBM vuông tại D và △ECN vuông tại E
Có: BD = EC (gt)
^DBM = ^ECN (cmt)
=> △DBM = △ECN (cgv-gnk)
=> DM = EN (2 cạnh tương ứng)
2, Vì MD ⊥ BC (gt) ; NE ⊥ BC (gt)
=> MD // NE (từ vuông góc đến song song)
Xét △DMI vuông tại D và △ENI vuông tại E
Có: DM = EN (cmt)
^DMI = ^ENI (MD // NE)
=> △DMI = △ENI (cgv-gnk)
=> IM = IN (2 cạnh tương ứng)
Và I nằm giữa M, N
=> I là trung điểm MN
Xét △DMI vuông tại D => MI > DI (quan hệ cạnh huyền và cạnh góc vuông)
Xét △IEN vuông tại E => IN > IE (quan hệ cạnh huyền và cạnh góc vuông) => IN > IC + CE => IN > IC + BD (CE = BD)
Ta có: MI + IN > DI + IC + BD => MN > BC (đpcm)
3, Gọi AH là đường cao của △ABC
Gọi O là giao điểm của đường cao AH và đường vuông góc với MN tại I
Xét △ABH và △ACH cùng vuông tại H
Có: AH là cạnh chung
AB = AC (cmt)
=> △ABH = △ACH (ch-cgv)
=> ^BAH = ^CAH (2 góc tương ứng)
Xét △ABO và △ACO
Có: AB = AC
^BAO = ^CAO (cmt)
AO là cạnh chung
=> △ABO = △ACO (c.g.c)
=> ^ABO = ^ACO (2 góc tương ứng) và OB = OC (2 cạnh tương ứng)
Xét △MIO vuông tại I và △NIO vuông tại I
Có: OI là cạnh chung
IM = IN (cmt)
=> △MIO = △NIO (cgv)
=> OM = ON (2 cạnh tương ứng)
Vì △MDB = △NEC (cmt) => MB = NC (2 cạnh tương ứng)
Xét △MBO và △NCO
Có: MB = NC (cmt)
OB = OC (cmt)
OM = ON (cmt)
=> △MBO = △NCO (c.c.c)
=> ^MBO = ^NCO (2 góc tương ứng)
Mà ^ABO = ^ACO (cmt)
=> ^ACO = ^NCO
Mà ^ACO + ^NCO = 180o (2 góc kề bù)
=> ^ACO : ^NCO = 180o : 2 = 90o
=> AC ⊥ OC
Ta thấy A, H, C cố định => O cố định (Là giao điểm của đường thẳng vuông góc với AC tại C và AH)
Vậy đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thuộc BC.