K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Ta có : \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)

\(=\left|x^2-x+1\right|+\left|2+x-x^2\right|\)

\(\ge\left|x^2-x+1+2+x-x^2\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x^2-x+1\right)\left(2+x-x^2\right)\ge0\)

\(\Leftrightarrow-1\le x\le2\)

Vậy : min \(\left|x^2-x+1\right|+\left|x^2-x-2\right|=3\) tại \(-1\le x\le2\)

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m^2-4m^2+4m-4=4m-4

Để (1) có 2 nghiệm thì 4m-4>=0

=>m>=1

 

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

13 tháng 1 2021

Ta có: \(B-\dfrac{2}{3}=\dfrac{x^2+1}{x^2-x+1}-\dfrac{2}{3}=\dfrac{\left(x-1\right)^2}{3\left(x^2-x+1\right)}=\dfrac{\left(x-1\right)^2}{3\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\Rightarrow B\ge\dfrac{2}{3}\).

Đẳng thức xảy ra khi x = 1.

Vậy Min B = \(\frac{2}{3}\) khi x = 1.

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

a.

$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$

Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$

Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

b.

$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$

$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$

Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

c. Biểu thức này không có min, chỉ có max

d.

$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$

Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

2 tháng 5 2017

3A=3(x^2-x+1)/(x^2+x+1)

3A-1=(3x^2-3x+3)/(x^2+x+1)-1

3A-1=(3x^2-3x+3-x^2-x-1)/(x^2+x+1)

3A-1=(2x^2-4x+2)/(x^2+x+1)

3A-1=2(x-1)^2/(x^2+x+1)>=0

=>3A>=1

A>=1/3

=>GTNN của A là 1/3 khi x-1=0 hay x=1 

A-3=(x^2-x+1)/(x^2+x+1)-3

A-3=(x^2-x+1-3x^2-3x-3)/(x^2+x+1)

A-3=(-2x^2-4x-2)/(x^2+x+1)

A-3=-2(x+1)^2/(x^2+x+1)<=0

=>A<=3

=>GTLN của A=3 khi x=-1 

9 tháng 5 2017

con H=(x^2+x+1)/(x^2-x+1)

21 tháng 5 2018

\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.