1^2.2^2.3^2-2015/1.2.3+2^2.3^2.4^2-2015/2.3.4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
B
3
8 tháng 12 2017
A =2^2-1^2/1^2.2^2 + 3^2-2^2/2^2.3^2 + ..... + 2016^2-2015^2/2015^2.2016^2
= 1/1^2-1/2^2+1/2^2-1/3^2+.....+1/2015^2-1/2016^2
= 1-1/2016^2 < 1
=> ĐPCM
k mk nha
8 tháng 12 2017
Mk hơi bối rối,bn dùng cái gõ phương trình trên thanh công cụ được ko.
R
1
BT
2 tháng 5 2017
Ta có: \(\frac{3}{1^2.2^2}=\frac{1}{1^2}-\frac{1}{2^2}\); \(\frac{5}{2^2.3^2}=\frac{1}{2^2}-\frac{1}{3^2}\); \(\frac{7}{3^2.4^2}=\frac{1}{3^2}-\frac{1}{4^2}\);....; \(\frac{4031}{2015^2.2016^2}=\frac{1}{2015^2}-\frac{1}{2016^2}\)
=> \(A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2015^2}-\frac{1}{2016^2}\)
=> \(A=1-\frac{1}{2016^2}< 1\)
=> A < 1
Bằng 612
12.22.32-\(\frac{2015}{1.2.3}\)+12.22.32.42-\(\frac{2015}{1.2.3.4}\)
=36 +576 - (\(\frac{2015}{1.2.3}\)+\(\frac{2015}{1.2.3.4}\))
= 612-\(\frac{10075}{24}\)
=\(\frac{4613}{24}\)