cho hình vẽ sau và chứng minh AB^2+DC^2=AD^2+BC^2 A B O D C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Gọi DK là đường cao của \(\Delta DPQ\)\(\left(K\in PQ\right)\)
F là giao điểm của DK với (O)\(\left(F\ne D\right)\)
Ta có: \(\widehat{OCA}=\widehat{OKA}=90^0\)
\(\Rightarrow\)Tứ giác OCAK nội tiếp.
\(\Rightarrow\widehat{COK}+\widehat{CAK}=180^0\)
Mà \(\widehat{COK}+\widehat{COF}=180^0\)
\(\Rightarrow\widehat{CAK}=\widehat{COF}\)
\(\Rightarrow\widehat{CAK}=180^0-\left(\widehat{FCO}+\widehat{CFO}\right)=180^0-2\widehat{FCO}\)(Vì \(\Delta OFC\) cân tại O (OC=OF))
Ta có: \(\widehat{FCD}=90^0\)(góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{FCO}+\widehat{OCD}=90^0\)
Lại có:\(\widehat{OCA}=\widehat{OCD}+\widehat{ACD}=90^0\)(tính chất tiếp tuyến)
\(\Rightarrow\widehat{FCO}=\widehat{ACD}\)
\(\Delta CAQ\) có: \(\widehat{CAQ}+\widehat{ACD}+\widehat{AQC}=180^0\)
\(\Rightarrow180^0-2\widehat{FCO}+\widehat{FCO}+\widehat{AQC}=180^0\)
\(\Leftrightarrow\widehat{AQC}=\widehat{FCO}=\widehat{ACQ}\)
\(\Rightarrow\Delta CAQ\)cân tại A.
Lại có: AC=AB (Tính chất tiếp tuyến)
AB=AP(\(\Delta ABP\) cân tại A)
\(\Rightarrow AP=AC=AB=AQ\)
\(\Delta CPQ\)có: \(A\in PQ;AP=AC=AQ\)
\(\Rightarrow\Delta CPQ\)vuông tại C.
=>F,C,P thẳng hàng.
=> PC là đường cao của \(\Delta DPQ\)(\(C\in DQ\))
=> F là trực tâm của \(\Delta DPQ\)
=> F trùng với H.
Mà F thuộc (O)
=> H thuộc (O)
3:
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
b: Xét ΔOAB và ΔOCD có
OA=OC
\(\widehat{AOB}=\widehat{COD}\)
OB=OD
Do đó: ΔOAB=ΔOCD
=>AB=CD
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
=>\(\widehat{ABC}=\widehat{CDA}\)
c: Xét ΔOBN và ΔODM có
OB=OD
\(\widehat{OBN}=\widehat{ODM}\)
BN=DM
Do đó: ΔOBN=ΔODM
=>\(\widehat{BON}=\widehat{DOM}\)
mà \(\widehat{DOM}+\widehat{BOM}=180^0\)
nên \(\widehat{BON}+\widehat{BOM}=180^0\)
=>\(\widehat{MON}=90^0\)
=>M,O,N thẳng hàng
d: Xét ΔOAE và ΔOCF có
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)
Do đó: ΔOAE=ΔOCF
=>\(\widehat{AOE}=\widehat{COF}\)
mà \(\widehat{AOE}+\widehat{EOC}=180^0\)
nên \(\widehat{COF}+\widehat{COE}=180^0\)
=>\(\widehat{FOE}=180^0\)
=>F,O,E thẳng hàng
mà OE=OF
nên O là trung điểm của EF
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔDBA vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\)
Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)
c: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có
\(\widehat{KOA}\) chung
Do đó: ΔOKA đồng dạng với ΔOHF
=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)
=>\(OH\cdot OA=OK\cdot OF\left(5\right)\)
Xét ΔOCA vuông tại C có CH là đường cao
nên \(OH\cdot OA=OC^2=R^2=OD^2\left(6\right)\)
Từ (5)và (6) suy ra \(OK\cdot OF=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
Xét ΔOKD và ΔODF có
\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD đồng dạng với ΔODF
=>\(\widehat{OKD}=\widehat{ODF}=90^0\)
=>FD là tiếp tuyến của (O)
a: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
=>ΔBCD vuông tại C
=>BC vuông góc CD
=>CD//OA
b: Xét ΔBOA vuông tại B và ΔODE vuông tại O có
BO=OD
góc BOA=góc ODE
=>ΔBOA=ΔODE
=>OA=DE
mà OA//DE
nên OAED là hình bình hành
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
c; AD=DE
DE<DC
=>AD<DC
d: BA/AF=BE/EC
=>AE//FC