K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

c. Gọi DK là đường cao của \(\Delta DPQ\)\(\left(K\in PQ\right)\)

F là giao điểm của DK với (O)\(\left(F\ne D\right)\)

Ta có: \(\widehat{OCA}=\widehat{OKA}=90^0\)

\(\Rightarrow\)Tứ giác OCAK nội tiếp.

\(\Rightarrow\widehat{COK}+\widehat{CAK}=180^0\)

Mà \(\widehat{COK}+\widehat{COF}=180^0\)

\(\Rightarrow\widehat{CAK}=\widehat{COF}\)

\(\Rightarrow\widehat{CAK}=180^0-\left(\widehat{FCO}+\widehat{CFO}\right)=180^0-2\widehat{FCO}\)(Vì \(\Delta OFC\) cân tại O (OC=OF))

Ta có: \(\widehat{FCD}=90^0\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{FCO}+\widehat{OCD}=90^0\)

Lại có:\(\widehat{OCA}=\widehat{OCD}+\widehat{ACD}=90^0\)(tính chất tiếp tuyến)

\(\Rightarrow\widehat{FCO}=\widehat{ACD}\)

\(\Delta CAQ\) có: \(\widehat{CAQ}+\widehat{ACD}+\widehat{AQC}=180^0\)

\(\Rightarrow180^0-2\widehat{FCO}+\widehat{FCO}+\widehat{AQC}=180^0\)

\(\Leftrightarrow\widehat{AQC}=\widehat{FCO}=\widehat{ACQ}\)

\(\Rightarrow\Delta CAQ\)cân tại A.

Lại có: AC=AB (Tính chất tiếp tuyến)

AB=AP(\(\Delta ABP\) cân tại A)

\(\Rightarrow AP=AC=AB=AQ\)

\(\Delta CPQ\)có: \(A\in PQ;AP=AC=AQ\)

\(\Rightarrow\Delta CPQ\)vuông tại C.

=>F,C,P thẳng hàng.

=> PC là đường cao của \(\Delta DPQ\)(\(C\in DQ\))

=> F là trực tâm của \(\Delta DPQ\)

=> F trùng với H.

Mà F thuộc (O)

=> H thuộc (O)

6 tháng 5 2017

Trực tâm H chứ bạn?

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.   a. Chứng minh △AHB và △BCD đồng dạng    b. Chứng minh BC.AB = AH.BD     c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD   a. Chứng minh: △CBN và △CDM cân    b. Chứng minh: △CBN \(\sim\) △MDN    c. Chứng minh: M,C,N thẳng hàng3) Cho △ABC...
Đọc tiếp

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.

   a. Chứng minh △AHB và △BCD đồng dạng

    b. Chứng minh BC.AB = AH.BD 

    c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)

2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD

   a. Chứng minh: △CBN và △CDM cân

    b. Chứng minh: △CBN \(\sim\) △MDN

    c. Chứng minh: M,C,N thẳng hàng

3) Cho △ABC vuông tại A (AB < AC) có đường cao AH.

   a. Chứng minh: △ABH\(\sim\)△CBA

    b. Chứng minh: \(AH^2=BH.HC\)

    c. Trên đường thẳng vuông góc với AC tại C, lấy điểm D sao cho CD=AB (D và B nằm khác phía so với đường thẳng AC). Đoạn thẳng HD cắt đoạn thẳng AC tại S. Kẻ \(\text{AF}\perp H\text{S }t\text{ại F}\)

Chứng minh BH.CH = HF.HD

1

3:

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

 

15 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

b: Xét ΔOAB và ΔOCD có

OA=OC

\(\widehat{AOB}=\widehat{COD}\)

OB=OD

Do đó: ΔOAB=ΔOCD

=>AB=CD

Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

=>\(\widehat{ABC}=\widehat{CDA}\)

c: Xét ΔOBN và ΔODM có

OB=OD

\(\widehat{OBN}=\widehat{ODM}\)

BN=DM

Do đó: ΔOBN=ΔODM

=>\(\widehat{BON}=\widehat{DOM}\)

mà \(\widehat{DOM}+\widehat{BOM}=180^0\)

nên \(\widehat{BON}+\widehat{BOM}=180^0\)

=>\(\widehat{MON}=90^0\)

=>M,O,N thẳng hàng

d: Xét ΔOAE và ΔOCF có

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)

Do đó: ΔOAE=ΔOCF

=>\(\widehat{AOE}=\widehat{COF}\)

mà \(\widehat{AOE}+\widehat{EOC}=180^0\)

nên \(\widehat{COF}+\widehat{COE}=180^0\)

=>\(\widehat{FOE}=180^0\)

=>F,O,E thẳng hàng

mà OE=OF

nên O là trung điểm của EF

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(3\right)\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

c: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có

\(\widehat{KOA}\) chung

Do đó: ΔOKA đồng dạng với ΔOHF

=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)

=>\(OH\cdot OA=OK\cdot OF\left(5\right)\)

Xét ΔOCA vuông tại C có CH là đường cao

nên \(OH\cdot OA=OC^2=R^2=OD^2\left(6\right)\)

Từ (5)và (6) suy ra \(OK\cdot OF=OD^2\)

=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

Xét ΔOKD và ΔODF có

\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

\(\widehat{KOD}\) chung

Do đó: ΔOKD đồng dạng với ΔODF

=>\(\widehat{OKD}=\widehat{ODF}=90^0\)

=>FD là tiếp tuyến của (O)

a: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

=>ΔBCD vuông tại C

=>BC vuông góc CD

=>CD//OA

b: Xét ΔBOA vuông tại B và ΔODE vuông tại O có

BO=OD

góc BOA=góc ODE

=>ΔBOA=ΔODE

=>OA=DE

mà OA//DE

nên OAED là hình bình hành

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

c; AD=DE

DE<DC

=>AD<DC

d: BA/AF=BE/EC

=>AE//FC