Cho biết \(\frac{x}{x^2-x+1}=\frac{2}{3}\).Hãy tính giá trị của biểu thức:Q=\(\frac{x^2}{x^4+x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{x^2-x+1}=\frac{2}{3}\)
\(\Rightarrow3x=2\left(x^2-x+1\right)\)
\(\Leftrightarrow2x^2-2x+2-3x=0\)
\(\Leftrightarrow2x^2-5x+2=0\)
\(\Leftrightarrow2x^2-4x-x+2=0\)
\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)
Với x = 2 => Q = 4/21
Với x = 1/2 => Q = 4/21 :))
"Trần Nhật Quỳnh" có cách này ngắn gọn hơn nữa.
Ta có:
\(\frac{x}{x^2-x+1}=\frac{2}{3}\) \(\Rightarrow\frac{x^2-x+1}{x}=\frac{3}{2}\)\(\Rightarrow x-1+\frac{1}{x}=\frac{3}{2}\)
\(\Rightarrow x+\frac{1}{x}=\frac{5}{2}\)
Lại có:
\(Q=\frac{x^2}{x^4+x^2+1}\)
\(\frac{1}{Q}=\frac{x^4+x^2+1}{x^2}\)
\(\frac{1}{Q}=x^2+1+\frac{1}{x^2}\)
\(\frac{1}{Q}=\left(x^2+2x^2.\frac{1}{x^2}+\frac{1}{x^2}\right)-2x^2.\frac{1}{x^2}\)
\(\frac{1}{Q}=\left(x+\frac{1}{x}\right)^2-2\)
Vì \(x+\frac{1}{x}=\frac{5}{2}\)nên
\(\frac{1}{Q}=\left(\frac{5}{2}\right)^2-2\)
\(\frac{1}{Q}=\frac{25}{4}-2\)
\(\frac{1}{Q}=\frac{21}{4}\)
\(\Rightarrow Q=\frac{4}{21}\)
Vậy \(Q=\frac{4}{21}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0;x\ne2\\x\ne-1\end{cases}}\)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(\Leftrightarrow Q=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(\Leftrightarrow Q=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{x\left(x-2\right)}{x^2-x+1}\)
\(\Leftrightarrow Q=1+\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2x^2+4x}{x\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2}{x+1}\)
\(\Leftrightarrow Q=\frac{x-1}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(ktm\right)\\x=-\frac{1}{2}\left(tm\right)\end{cases}}\)
Thay \(x=-\frac{1}{2}\)vào Q, ta được :
\(Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}\)
\(\Leftrightarrow Q=\frac{-\frac{3}{2}}{\frac{1}{2}}\)
\(\Leftrightarrow Q=-3\)
c) Để \(Q\inℤ\)
\(\Leftrightarrow x-1⋮x+1\)
\(\Leftrightarrow x+1-2⋮x+1\)
\(\Leftrightarrow2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
a) \(ĐKXĐ:\hept{\begin{cases}x^3+1\ne0\\x^3-2x^2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)(chỗ chữ và là do OLM thiếu ngoặc 4 cái nên mk để thế nha! trình bày thì kẻ thêm 1 ngoặc nưax)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left[\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{4x-2x^2}{x+1}.\frac{1}{x\left(x-2\right)}\)
\(=1-\frac{2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b, Với \(x\ne0;x\ne-1;x\ne2\)Ta có:
\(|x-\frac{3}{4}|=\frac{5}{4}\)
*TH1:
\(x-\frac{3}{4}=\frac{5}{4}\Rightarrow x=2\)(ko thảo mãn)
*TH2:
\(x-\frac{3}{4}=-\frac{5}{4}\Rightarrow x=-\frac{1}{2}\)
\(\Rightarrow Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
c,
\(Q=\frac{x-1}{x+1}=1-\frac{2}{x+1}\)
Để Q nguyên thì x+1 phải thuộc ước của 2!! tự làm tiếp dễ rồi!!
Đề bài \(\frac{x}{x^2+x+1}=-\frac{2}{3}\Leftrightarrow x^2+x+1=-\frac{3}{2}x\)
\(\Leftrightarrow x^2+1=-\frac{5}{2}x\Leftrightarrow x^4+2x^2+1=\frac{25}{4}x^2\Leftrightarrow x^4+x^2+1=\frac{21}{4}x^2\)
\(\Rightarrow\frac{x^2}{x^4+x^2+1}=\frac{x^2}{\frac{21}{4}x^2}=\frac{4}{24}\)
Theo đề bài ta có :
\(\frac{x}{x^2+x+1}=\frac{-2}{3}\)
\(\Rightarrow\frac{x^2+x+1}{x}=\frac{-3}{2}\)
\(\Rightarrow x+\frac{1}{x}+1=\frac{-3}{2}\)
\(\Rightarrow x+\frac{1}{x}=\frac{-5}{2}\)
\(\Rightarrow\frac{x^4+x^2+1}{x}=x^2+\frac{1}{x^2}+1\)
\(=\left(x+\frac{1}{x}\right)^2-1\)
\(=\frac{25}{4}-1=\frac{21}{4}\)
Vậy \(\frac{x^2}{x^4+x^2+1}=\frac{4}{21}\)
Ta có :
\(\frac{x}{x^2-x+1}=\frac{2}{3}\Rightarrow2\left(x^2-x+1\right)=3x\)
⇔ x2 - 5x + 2 = 0
⇔ ( x - 2 ) ( 2x - 1 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)
Với x = 2 \(\Rightarrow Q=\frac{2^2}{2^4+2^2+1}=\frac{4}{16+4+1}=\frac{4}{21}\)
Với \(x=\frac{1}{2}\Rightarrow Q=\frac{\left(\frac{1}{2}\right)^2}{\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^2+1}=\frac{\frac{1}{4}}{\frac{1}{16}+\frac{1}{4}+1}=\frac{4}{21}\)
Vậy giá trị của Q là \(\frac{4}{21}\)