K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2020

\(x^2-2y^2-xy+2y-x=0\)

\(\Leftrightarrow x^2-4y^2+2y^2-xy+2y-x=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+2y\right)-y\left(x-2y\right)-\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y-1\right)=0\)

Thay xuống pt dưới là được

NV
26 tháng 12 2020

a.

\(\Leftrightarrow\left\{{}\begin{matrix}2xy+2y^2=2+2y\\x^2+2y^2+2xy=4+x\end{matrix}\right.\)

\(\Rightarrow x^2+4xy+4y^2=x+2y+6\)

\(\Leftrightarrow\left(x+2y\right)^2-\left(x+2y\right)-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=3\\x+2y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3-2y\\x=-2-2y\end{matrix}\right.\)

Thế vào pt đầu...

b.

Từ pt đầu:

\(\left(x^2-xy-2y^2\right)-\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)-\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1-y\\x=2y\end{matrix}\right.\)

Thế xuống pt dưới...

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

29 tháng 7 2021

ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html

NV
29 tháng 7 2021

b.

Với \(xy=0\) không là nghiệm

Với \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)

\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)

\(\Leftrightarrow5-x^2=5x-2x^2\)

\(\Leftrightarrow...\)

18 tháng 8 2021

các bn ơi giúp mình với

 

24 tháng 6 2019

1,\(\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2-1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2+3-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\left(\sqrt{y^2+3}-2\right)\left(\sqrt{y^2+3}+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1=0\\y^2=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)