Cho ababab là số có 6 chữ số,chứng tỏ ababab là bội của 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ababab = ab . 10101 = ab . 3 . 3367 chia hết cho 3 ( Do tích có chứa thừa số 3 )
=> ababab chia hết cho 3 .
=> ababab là bội của 3 .
Ta có ababab = 10101 x ab mà 10101 chia hết cho 1443 (10101=1443 x 70) nên 1443 là ước của số có dạng ababab.
ababab = 10101 . ab = 1443 . 7 .ab nên 1443 là ước của số có dạng ababab
Ta có :
Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3
a + b + a + b + a + b
= 3 x b + 3 x a
= 3 . ( b + a )
=> ababab chia hết cho 3
1.Có 6 số tự nhieenlaf bội của 25 đồng thời là ước của 300
1.Có 6 STN là bội của 25 đồng thời là ước của 300. 2.Số nguyên tố lớn nhất có dạng *31 là 631 3.33 4.2215 nha (ai thấy đúng thì tích cho mik nha)
abcabc=1000abc+abc
=1001abc=7.11.13.abc
\(\Rightarrow\)abcabc là bội của 7;13;11 vì nó chia hết cho các số đo và lớn hơn chúng
a) abba = 1001a + 110b = 11.(91a + 10b) chia hết cho 11
\(\Rightarrow\) abba là bội của 11
b) ababab = ab.10101 = ab.3367.3 chia hết cho 3
\(\Rightarrow\) ababab là bội của 3
c) abcd = ab.100 + cd
Ta có ab.100 chia hết cho 4 (vì 100 chia hết cho 4)
cd chia hết cho 4
\(\Rightarrow\) ab.100 + cd chia hết cho 4
\(\Rightarrow\) abcd chia hết cho 4
d) abcd = ab.100 + cd
Ta có abcd chia hết cho 4
ab.100 chia hết cho 4 (vì 100 chia hết cho 4)
\(\Rightarrow\) cd chia hết cho 4
#include <bits/stdc++.h>
using namespace std;
long long n,t,x;
int main()
{
cin>>n;
t=0;
while (n>0)
{
x=n%10;
t=t+x;
n=n/10;
}
if (t%3==0) cout<<"Co";
else cout<<"Khong";
return 0;
}
bài này giải zậy hã
Ta có biểu thức sau có số hạng là :
( 999 - 100 ) + 1 + 900 ( số hạng )
A = ( 100 + 999 ) . 900 : 2 = 494550
\(494550chia\)\(het\)\(cho2\)
\(494550chia\)\(het\)\(cho5\)
ababab : 3 = 121212
\(\overline{ababab}=100000a+10000b+a1000+100b+a10+b\)
\(\Rightarrow\left(100000a+1000a+a10\right)+\left(10000b+100b+b\right)\)
\(\Rightarrow101010a+10101b\)
\(\Rightarrow3.33670+3.3367\)
\(=3\left(33670+3367\right)\)
\(\Rightarrow3\left(33670+3367\right)⋮3\)
Vậy nên \(\overline{ababab}\in B\left(3\right)\)
hok tốt!!