Tìm phân số dương nhỏ nhất để khi nhân nó với một trong các phân số \(\frac{3}{4};\frac{6}{5};\frac{9}{10}\)Đều được kết quả là những số nguyên
các bạn giúp mình với!@#$%^&*()
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi phân số tối giản cần tìm là \(\frac{a}{b}\).
để \(\frac{a}{b}\)> 0 nhỏ nhất thì a phải nhỏ nhất và b phải lớn nhất
Ta có : \(\frac{a}{b}.\frac{3}{4}=\frac{3a}{4b}\in Z\Rightarrow a\in B\left(4\right)\text{ và }b\inƯ\left(3\right)\)
\(\frac{a}{b}.\frac{6}{5}=\frac{6a}{5b}\in Z\Rightarrow a\in B\left(5\right)\text{ và }b\inƯ\left(6\right)\)
\(\frac{a}{b}.\frac{9}{10}=\frac{9a}{10b}\in Z\Rightarrow a\in B\left(10\right)\text{ và }b\inƯ\left(9\right)\)
\(\Rightarrow\)a = BCNN ( 4,5,10 ) = 20
b = ƯCLN ( 3,6,9 ) = 3
Vậy phân số phải tìm là \(\frac{20}{3}\)
gọi a là số nguyên dương cần tìm
để 3a/4,-5a/11,7a/12 là những số nguyên thì a phải chia hết cho 4,cho11,cho12;a là số nguyên dương nhỏ nhất nên a là BCNN(4,11,12)=132
+)Gọi phân số cần tìm là:\(\frac{a}{b}\)(\(\frac{a}{b}>0;\frac{a}{b}\)nhỏ nhất)
+)Đề \(\frac{a}{b}\)nhỏ nhất thì a phải nhỏ nhất;b phải lớn nhất
+)Ta có:\(\frac{a}{b}.\frac{3}{4}=\frac{3a}{4b}\)
Để:\(\frac{3a}{4b}\)là số nguyên thì \(3⋮b;a⋮4\)(1)
+)Ta lại có:\(\frac{a}{b}.\frac{6}{5}=\frac{6a}{5b}\)
Để:\(\frac{6a}{5b}\)là số nguyên thì \(6⋮b;a⋮5\)(2)
+)Ta có:\(\frac{a}{b}.\frac{9}{10}=\frac{9a}{10b}\)
Để:\(\frac{9a}{10b}\)là số nguyên thì \(9⋮b;a⋮10\)(3)
+)Từ (1);(2) và (3)
=>\(a\in BC\left(4,5,10\right)\);\(b\inƯC\left(3,6,9\right)\)
Mà a nhỏ nhất;b lớn nhất
\(\Rightarrow a=BCNN\left(4,5,10\right);b=ƯCLN\left(3,6,9\right)\)
+) 4=22 5 10=2.5
\(\Rightarrow BCNN\left(4,5,10\right)=2^2.5=20\)
\(\Rightarrow\)a=20
\(b=ƯCLN\left(3,6,9\right)\)
+)3 6=2.3 9=32
\(\RightarrowƯCLN\left(3,6,9\right)=3\)
\(\Rightarrow b=3\)
Vậy phân số \(\frac{a}{b}=\frac{20}{3}\)thỏa mãn điều kiện phân số nguyên dương nhỏ nhất và khi nhân với \(\frac{3}{4};\frac{6}{5};\frac{9}{10}\)được kết quả là những số nguyên
Chúc bn học tốt