Bt:a, xác định m để pt ẩn x sau có 2 nghiệm dương phân biệt: x^2-(m+3)x+3m=0
b, xác định m để pt ẩn x sau có nghiệm này bằng 3 nghiệm kia: x^2-(2m+1)x+m^2+m-6=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
- Với \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
- Với \(m\ne\dfrac{5}{2}\) ta có:
\(a+b+c=2m-5-2\left(m-1\right)+3=0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2m-5}\end{matrix}\right.\)
Do 1 là số nguyên dương nên để pt có 2 nghiệm pb đều nguyên dương thì:
\(\left\{{}\begin{matrix}\dfrac{3}{2m-5}\ne1\\\dfrac{3}{2m-5}\in Z^+\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne4\\2m-5=Ư\left(3\right)=\left\{1;3\right\}\end{matrix}\right.\) (do nghiệm nguyên dương và 3 dương nên ta chỉ cần xét các ước dương của 3)
\(\Rightarrow\left\{{}\begin{matrix}m\ne4\\m=\left\{3;4\right\}\end{matrix}\right.\)
\(\Rightarrow m=3\)
Đề là "hai nghiệm dương" hay "hai nghiệm nguyên dương" vậy em?
\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)
a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)
b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)
\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)
Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.
d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)
\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)
\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)
c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)
Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)
Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)
\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)
\(\Leftrightarrow13m^2+39m^2+23=0\)
...
\(x^2-\left(3m+1\right)x+2m^2+3m-2=0\)
Ta có \(\Delta=\left(3m+1\right)^2-4.\left(2m^2+3m-2\right)\)
\(=9m^2+6m+1-8m^2-12m+8\)
\(=m^2-6m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
hay m khác 3
Vậy m khác 3 thì pt có 2 nghiệm phân biệt
Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)
\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)
Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)
Do đó:
a.
Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm
TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)
TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)
Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)
b.
Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)
\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)
c.
Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)
d.
Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)
À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa
Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!
\(x^2-\left(m+3\right)x+3m=0\)
\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)
\(=m^2-9m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
\(\Rightarrow m\ne3\)