K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(H=2+2^2+2^3+...+2^{60}\)

\(H=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(H=30+2^4\left(2+2^2+2^4+2^4\right)+...+2^{56}\left(2+2^2+2^3+2^4\right)\)

\(H=30\cdot1+30\cdot2^4+...+30\cdot2^{56}\)

\(H=30\left(1+2^4+....+2^{56}\right)⋮15;3\)

 ______

\(H=2+2^2+2^3+...+2^{60}\)

\(H=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)

\(H=14+2^3\left(2+2^2+2^3\right)+...+2^{57}\left(2+2^2+2^3\right)\)

\(H=14\cdot1+14\cdot2^3+...+14\cdot2^{57}\)

\(H=14\left(1+2^3+...+2^{57}\right)⋮7\)

21 tháng 10 2023

a: \(G=8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

\(E=1+3+3^2+3^3+...+3^{1991}\)

\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)

\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

24 tháng 5 2019

8 tháng 11 2017

4 + 4^3 + 4^5 + 4^7 + ... + 4^23

= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)

=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )

=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68

Câu 2:

1+3+3^2+3^3+....+3^2000

=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)

=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )

= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13

k mk nha lần sau mk k lại

8 tháng 11 2017

Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)

= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68

=68.(1+4^4+....+4^20) chia hết cho 68

Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)

= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13

=13.(1+3^3+....+3^1998) chia hết cho 13

23 tháng 7 2016

 

a,10^33+8 chia hết cho 18 

1033 + 8 = 10...000 ( 33 chữ số 0 ) + 8 = 10...008 ( 32 chữ số 0 ) , có :

- Chữ số tận cùng 8 chia hết cho 2 . ( 1 )

- Tổng các chữ số : 1 + 0 +...+ 0 + 0 + 8 = 9 chia hết cho 9 . ( 2 )

Từ ( 1 ) và ( 2 ) => 10^33 + 8 chia hết cho 18 .

 

b,10^10+14 chia hết cho 6

1010 + 14 = 10...000 ( 10 chữ số 0 ) + 14 = 10...014 ( 8 chữ số 0 ) , có :

- Chữ số tận cùng 4 chia hết cho 2 . ( 1 )

- Tổng các chữ số : 1 + 0 +...+ 0 + 1 + 4 = 6 chia hết cho 3 . ( 2 )

Từ ( 1 ) và ( 2 ) => 10^10 + 14 chia hết cho 6 .

Còn lại bn tự làm nha .  Kinh.gif

 

 

 

 

23 tháng 7 2016

Ta có

+)  \(10^{33}+8=100......00000008⋮9\)      (1)

                        ( 33 chữ số 0 )

+)  1033 chia hết cho 2

      8 chia hết cho 2

=> 1033+8 chia hết cho 2 (2)

Mà (2;3)=1

Từ (1) và (2) => \(10^{33}+8⋮2.9=18\)

b) Ta có

+) \(10^{10}+14=100...014⋮3\) (4)

                      ( 9 chữ số 0)

+) 1010 chia hết cho 2

       14 chia hết cho 2

=> 1010+14 chia hết cho 2 (4)
Mà (2;3)=1

Từ (1) và (2)

=>\(10^{10}+14⋮2.3=6\)

c)

MÌnh sửa một chút 119=>119

Có lẽ do đánh vội nên bạn viết sai :))

Ta thấy A có 20 số hạng

Mà mỗi số hạng đều có tận cùng là 1

=>\(A=\left(\overline{....1}\right)+\left(\overline{....1}\right)+.....+\left(\overline{....1}\right)=\left(\overline{....20}\right)\)

chia hết cho 5

d)

\(B=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)=3\left(2+2^3+....+2^{59}\right)⋮3\left(5\right)\) 

\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)=7\left(2+2^4+....+2^{58}\right)⋮7\)

\(B=2\left(1+2^2\right)+2^2\left(1+2^2\right)+....+2^{58}\left(1+2^2\right)=5\left(2+2^2+...+2^{58}\right)⋮5\left(6\right)\)

Mà (3;5)=1

Từ (5) và (6)

=>\(B⋮3.5=15\)

6 tháng 11 2016

bạn chỉ cần tìm ra số tận cùng nhé

6 tháng 9 2017

nhiều thế bố ai làm gấp được