Trong một phòng có một số ghế dài. Nếu xếp mỗi ghế 5 người thì có 9 người không có chổ ngồi. Nếu xếp mỗi ghế 6 người thì thừa 1 ghế. Hỏi phòng họp có bao nhiêu ghế và có bao nhiêu người dự họp?
Giúp mik với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
Bài 1:
Gọi số ghế trong phòng họp là x (cái)
số người dự họp là y (người) (x,y ∈ N*)
Vì nếu xếp mỗi ghế 5 người thì có 9 người không có chỗ ngồi
⇒5x−y=−9(1)
Vì nếu xếp ghế 6 người thì thừa 1 ghế
⇒6x−y=1(2)
Từ (1) và (2) ta có hệ phương trình: 5x-y=-9; 6x-y=1
Giải hệ ta được: x=10;y=59(t/m)
Vậy trong phòng họp có 10 cái ghế và 59 người dự họp
Gọi số người dự họp và số ghế có trong phòng lần lượt là \(a,b\)(\(a,b\inℕ\))
Theo bài ra ta có hệ phương trình: \(\hept{\begin{cases}a=5b+9\\a=6b-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=59\\b=10\end{cases}}\)(thỏa mãn)
Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]
=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)
Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2
Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)
Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)
=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a
=> 35a-70+2a\(^2\)-4a=35a
=> 2a\(^2\)-4a-70=0
=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp
Trường hợp 1 : a-1 = -6 => a = - 5 [loại]
Trường hợp 2 : a - 1 = 6 => a = 7
Còn đây bạn làm nốt tiếp
Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.
Gọi số dãy lúc đầu là x
Theo đề, ta có: 70/(x-2)-70/x=4
=>(70x-70x+140)/(x^2-2x)=4
=>4x^2-8x-140=0
=>x=7
Gọi số dãy ghế lúc đầu là x(x \(\in\) N* , x > 0)
Số ghế mỗi dãy: \(\dfrac{70}{x}\) (ghế)
Nếu bớt đi 2 dãy ghế ngồi thì mỗi dãy còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.
\(\Rightarrow\left(x-2\right)\left(\dfrac{70}{x}+4\right)=70\)
\(\Rightarrow4x-\dfrac{140}{x}+62=70\)
\(\Rightarrow4x^2-140+62x=70x\) (do x \(\in\) N* )
\(\Rightarrow4x^2-8x-140=0\)
\(\Rightarrow x=-5\left(l\right);x=7\left(n\right)\)
Vậy lúc đầu phòng họp có 7 dãy ghế.
Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10
mỗi hàng ghế có số ghế là x
có số hàng ghế là \(\frac{300}{x}\)
lúc sau mỗi hàng có số ghế là x+2
có số hàng ghế là \(\frac{300}{x}+1\)ta có pt:
\(\frac{300}{x}+1=\frac{357}{x+2}\)
\(300x+600+x^2+2x=357x\)
\(x^2-55x+600=0\)
\(\Delta= \left(-55\right)^2-\left(4.1.600\right)=625\)
\(\sqrt{\Delta}=25\)
\(x_1=\frac{55+25}{2}=35\left(KTM\right)\)
\(x_2=\frac{55-25}{2}=15\left(TM\right)\)
có số hàng ghế \(\frac{300}{15}=20\)( Hàng ghế )
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
- Gọi số ghế có trong phòng họp là x ( ghế, \(x\in N\)* )
- Gọi số người dự họp là y ( người , \(y\in N\)* )
Theo đề bài nếu xếp mỗi ghế 5 người thì có 9 người không có chổ ngồi nên ta có phương trình : \(y-5x=9\left(I\right)\)
Theo đề bài nếu xếp mỗi ghế 6 người thì thừa 1 ghế nên ta có phương trình :\(y-6x=6\left(II\right)\)
- Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}y-5x=9\\y-6x=6\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9+5x\\9+5x-6x=6\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9+5x\\-x=-4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9+5.4=29\\x=4\end{matrix}\right.\) ( TM )
Vậy phòng họp đó có 4 chiếc ghế và 29 người sẽ dự họp .
Mình sửa lại bài kia sai : )
- Gọi số ghế có trong phòng họp là x ( ghế, x∈N* )
- Gọi số người dự họp là y ( người , y∈N* )
Theo đề bài nếu xếp mỗi ghế 5 người thì có 9 người không có chổ ngồi nên ta có phương trình : y−5x=9(I)
Theo đề bài nếu xếp mỗi ghế 6 người thì thừa 1 ghế nên ta có phương trình :y−6x=6(II)
- Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}y-5x=9\\y-6x=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9+5x\\9+5x-6x=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9+5x\\-x=-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=5.3+9=24\\x=3\end{matrix}\right.\) ( TM )
Vậy phòng họp đó có 3 chiếc ghế và 24 người sẽ dự họp .