K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 10 2023

 Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn nhé. 

19 tháng 8 2021

Ta có \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

\(\Leftrightarrow C=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{3-2\sqrt{2}+16}{\sqrt{\left(\sqrt{2}-1\right)^2}+3}\\ =\dfrac{19-2\sqrt{2}}{\sqrt{2}-1+3}=\dfrac{19-2\sqrt{2}}{2-\sqrt{2}}\\ =\dfrac{\left(19-2\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}=\dfrac{34+15\sqrt{2}}{2}\)

19 tháng 8 2021

Ta có \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

\(\Leftrightarrow C=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{3-2\sqrt{2}+16}{\sqrt{\left(\sqrt{2}-1\right)^2}+3}\\ =\dfrac{19-2\sqrt{2}}{\sqrt{2}-1+3}=\dfrac{19-2\sqrt{2}}{2-\sqrt{2}}\\ =\dfrac{\left(19-2\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}=\dfrac{34+15\sqrt{2}}{2}\)

Mình xin phép bổ sung một chút vào trong hình vẽ nha bạn. Chứ để như vậy thì ko chứng minh a song song với b đâu

loading...

a: a vuông góc AB

b vuông góc AB

=>a//b

b: a//b

=>góc ACB=góc CBD

=>góc CBD=40 độ

c: góc ODB=180-130=50 độ

góc ODB+góc OBD=50+40=90 độ

=>ΔOBD vuông tại O

=>DO vuông góc BC

23 tháng 10 2016

\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)

\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)

\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)

Cứ nhân lần lược vào rồi rút gọn sẽ được như trên

22 tháng 10 2016

Đọc cái đề giống như muốn hack não quá. Ghi rõ đi bạn

20 tháng 10 2019

\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=\sqrt{3^2}-4\sqrt{5}-\sqrt{5}=3-5\sqrt{5}\)

\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)

\(c,\sqrt{11}-6\sqrt{2}+3+\sqrt{2}=\sqrt{11}-5\sqrt{2}+3\)

13 tháng 9 2019

\(a,\sqrt{9}-4\sqrt{5}-\sqrt{5}=3-3\sqrt{5}\)

\(b,\sqrt{3}-2\sqrt{2}-\sqrt{3}+2\sqrt{2}=0\)

26 tháng 8 2021

undefined

a: Ta có: \(\widehat{DAH}+\widehat{DAB}=180^0\)

\(\widehat{CBK}+\widehat{CBA}=180^0\)

mà \(\widehat{DAB}=\widehat{CBA}\)

nên \(\widehat{DAH}=\widehat{CBK}\)

Xét ΔDAH vuông tại H và ΔCBK vuông tại K có 

DA=CB

\(\widehat{DAH}=\widehat{CBK}\)

Do đó: ΔDAH=ΔCBK

Suy ra: AH=BK

b: Xét tứ giác HKCD có 

HK//CD

HD//KC

Do đó: HKCD là hình bình hành

Suy ra: HK=CD

mà CD=10cm

nên HK=10cm

\(\Leftrightarrow AH=BK=\dfrac{HK-AB}{2}=\dfrac{10-6}{2}=2cm\)

a: Ta có: M và E đối xứng nhau qua AB

nên AB là đường trung trực của ME

Suy ra: AM=AE(1)

Ta có: M và F đối xứng nhau qua AC

nên AC là đường trung trực của MF

Suy ra: AM=AF(2)

Từ (1) và (2) suy ra AE=AF

b: Xét ΔAME có AM=AE

nên ΔAME cân tại A

mà AB là đường trung trực ứng với cạnh đáy ME

nên AB là tia phân giác của \(\widehat{MAE}\)

Xét ΔAMF có AM=AF

nên ΔAMF cân tại A

mà AC là đường trung trực ứng với cạnh đáy MF

nên AC là tia phân giác của \(\widehat{MAF}\)

Ta có: \(\widehat{EAF}=\widehat{FAM}+\widehat{EAM}\)

\(=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)\)

\(=2\cdot90^0=180^0\)

Do đó: E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

Ta có: ΔABC cân tại A

mà AH là đường phân giác ứng với cạnh BC

nên AH là đường trung trực ứng với cạnh BC

Ta có: AE+EB=AB

AF+FC=AC

mà AE=AF

và AB=AC

nên EB=FC

Xét ΔEBH và ΔFCH có

EB=FC

\(\widehat{B}=\widehat{C}\)

HB=HC

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

Ta có: AE=AF

nên A nằm trên đường trung trực của EF(1)

ta có: HE=HF

nên H nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra AH là đường trung trực của FE

hay E và F đối xứng nhau qua AH

Ta có: DB=DC
nên D nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AD là đường trung trực của BC

hay B và C đối xứng nhau qua AD