K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

Nguyễn Ngọc Lộc , ?Amanda?, Trần Quốc Khanh, Akai Haruma, Phạm Lan Hương, Nguyễn Lê Phước Thịnh, Hoàng Thị Ánh Phương , Nguyễn Thành Trương, ...

18 tháng 10 2020

\(VT\ge\left(3x+3y\right).\frac{4}{3x+3y}=4\)

Đẳng thức xảy ra khi x = y

18 tháng 10 2020

Sửa ĐK x, y > 0 

Ta có : \(\frac{1}{x+2y}+\frac{1}{2x+y}\ge\frac{\left(1+1\right)^2}{x+2y+2x+y}=\frac{4}{3x+3y}\)( Bunyakovsky dạng phân thức )

=> \(\left(3x+3y\right)\left(\frac{1}{x+2y}+\frac{1}{2x+y}\right)\ge\left(3x+3y\right)\left(\frac{4}{3x+3y}\right)=4\)

Đẳng thức xảy ra khi x = y

11 tháng 11 2016

Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)

Áp dụng vào bài toán của bạn :

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)

b/ Tương tự

c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)

d/ Tương tự

e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)

f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)

Suy ra \(y\le\frac{1}{2\sqrt{2}}\)

..........................

g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)

\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)

\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)

\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)

Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)

 

 

22 tháng 3 2020

\(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2\\ =\frac{4x^2+4y^2+z^2+8xy-4xz-4yz}{9}+\frac{4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\frac{4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\\ =\frac{9x^2+9y^2+9z^2}{9}=x^2+y^2+z^2\)

22 tháng 3 2020

- Ta có : \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2x+2z-y}{3}\right)^2\)

\(=\frac{\left(2x+2y-z\right)^2}{9}+\frac{\left(2y+2z-x\right)^2}{9}+\frac{\left(2x+2z-y\right)^2}{9}\)

\(=\frac{\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2x+2z-y\right)^2}{9}\)

\(=\frac{4x^2+4y^2+z^2+8xy-4yz-4xz+4y^2+4z^2+x^2+8yz-4xy-4xz+4x^2+4z^2+y^2+8xz-4xy-4yz}{9}\)

\(=\frac{9x^2+9y^2+9z^2}{9}=\frac{9\left(x^2+y^2+z^2\right)}{9}=x^2+y^2+z^2\)