Cho a thuộc Z, tìm x thuộc Z biết :
a. |x| = a
b. |x + a | = a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: |x|=a
TH1: Nếu a<0 => không có giá trị nào của x thỏa mãn.
TH2: Nếu a>0 => x=a hoặc x=-a
Có: |x+a|=a
TH1: Nếu a<0 => không có giá trị nào của x thỏa mãn.
TH2: Nếu a>0
=> x+a=a hoặc x+a=-a
<=> x=0 hoặc x= -2a
a) *Trường hợp 1: a < 0
=> Vô lý vì |a| ≥ 0
=> Ko có giá trị a cần tìm
*Trường hợp 2: a ≥ 0
\(\left|a\right|=a\Rightarrow\orbr{\begin{cases}a=a\\a=-a\end{cases}}\)
b)
*Trường hợp 1: a < 0
=> Vô lý vì |x + a| ≥ 0
=> Ko có giá trị x cần tìm
*Trường hợp 2: a ≥ 0
\(\left|x+a\right|=a\Rightarrow\orbr{\begin{cases}x+a=a\\x+a=-a\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-2a\end{cases}}\)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
|x-a|=a
nên x-a=a hoặc x-a=-a
x=a+a x=-a+a
x=2a x=0
Vậy x=2a hoặc x=0
a. lxl = a
=> x= = -a hoặc x = a
a. Vì | x | = a nên x = -a hoặc x = a .
b. Ta có : Vì | x + a | = a nên a có thể = -a hoặc a nên x = 0
Học tốt
# owe