K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi x1,x2 lần lượt là nghiệm của 2 đa thức f(x) và g(x)

Ta có:\(\hept{\begin{cases}ax_1+b=0\Rightarrow x_1=-\frac{b}{a}\\bx_2+a=0\Rightarrow x_2=-\frac{a}{b}\end{cases}}\)

\(\Rightarrow x_1x_2=-\frac{b}{a}.-\frac{a}{b}=1>0\)

Hay x1,x2 cùng dấu(đpcm)

27 tháng 2 2020

\(P\left(x\right)=ax+b\left(a,b\ne0\right)\)

\(Q\left(x\right)=bx+a\left(a,b\ne0\right)\)

Nghiệm của \(P\left(x\right)\)là số dương 

=>\(ax+b=0=>x=-\frac{b}{a}\)

tương tự , Nghiệm của \(Q\left(x\right)\)là số dương 

=> \(bx+a=0=>x=-\frac{a}{b}\)

=> \(\frac{a}{b}>0,\frac{b}{a}>0\left(dpcm\right)\)

17 tháng 2 2021

yếu quá

28 tháng 4

HasAki nè 

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

8 tháng 5 2017

Vì x=1, x=-1 là ngiệm của đa thức f(x) nên

a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0                 

=>a+b+c=a-b+c=0                             (1)

=>b=-b

=>b=0

thay b=0 vào (1) ta có a+c=0

=>a và c là 2 số đối nhau

8 tháng 5 2017

k cho mình

F(x)=0

=>x=-2 hoặc x=1

Để F(x) và G(x) có chung tập nghiệm thì:

-2+4a-2b+2=0 và 1+a+b+2=0

=>4a-2b=0 và a+b=-3

=>a=-1 và b=-2

25 tháng 4 2017

Bạn vô câu hỏi tương tự xem nhé.